×

The \(q\)-Onsager algebra and its alternating central extension. (English) Zbl 1495.17017

The \(q\)-Onsager algebra \(O_q\) is a quantized enveloping algebra for the Onsager Lie algebra \(O\). It has a presentation with two generators \(W_0, W_1\) and two relations, called the \(q\)-Dolan/Grady relations. A PBW basis for \(O_q\) was obtained by P.Baseilhac and S.Kolb. The PBW basis elements for \(O_q\) are denoted \(\{B_{n\delta+\alpha_0}\}_{n=0}^\infty\), \(\{B_{n\delta+\alpha_1}\}_{n=0}^\infty\), and \(\{B_{n\delta}\}_{n=1}^\infty\). A current algebra for the \(q\)-Onsager algebra \(O_q\) was introduced by P.Baseilhac and K.Koizumi in order to solve boundary integrable systems. This current algebra is denoted by \(\mathcal{O}_q\). The algebra \(\mathcal{O}_q\) gives a central extension of \(O_q\) and has a presentation involving a large number of generators \(\{\mathcal{W}_{-k}\}_{k=0}^\infty\), \(\{\mathcal{W}_{k+1}\}_{k=0}^\infty\), \(\{\mathcal{G}_{k+1}\}_{k=0}^{\infty}\), \(\{\tilde{\mathcal{G}}_{k+1}\}_{k=0}^\infty\), which form a PBW basis for \(\mathcal{O}_q\), and a large number of relations. It is known that there exists an algebra isomorphism \(O_q \to \langle\mathcal{W}_0, \mathcal{W}_1 \rangle\) that sends \(W_0 \to \mathcal{W}_0\) and \(W_1 \to \mathcal{W}_1\). It is known that the center \(\mathcal{Z}\) of \(\mathcal{O}_q\) is isomorphic to polynomial algebra in countably many variables. It is known that the multiplication map \(\langle \mathcal{W}_0, \mathcal{W}_1\rangle \otimes \mathcal{Z} \to \mathcal{O}_q\), \(w \otimes z\to wz\) is an isomorphism of algebras. We call this isomorphism the standard tensor product factorization of \(\mathcal{O}_q\). In the study of \(\mathcal{O}_q\) there are two point of view: we can start with the alternating generators, or we can start with the standard tensor product factorization. The goal of this paper is to describe this relationship. In this paper P.Terwilliger obtains seven main results and gives some conjectures and open problems.
P.Terwilliger shows relations between generating functions for \(O_q\) and \(\mathcal{O}_q\) as follows. \[ \frac{q+q^{-1}}{t+t^{-1}}\mathcal{W}^-\left(\frac{q+q^{-1}}{t+t^{-1}}\right) =\frac{q^{-1}t B^+(q^{-1}t)+B^-(qt)}{ (q^2-q^{-2})(t-t^{-1})}\tilde{\mathcal{G}}\left(\frac{q+q^{-1}}{t+t^{-1}}\right), \] \[ \frac{q+q^{-1}}{t+t^{-1}}\mathcal{W}^+\left(\frac{q+q^{-1}}{t+t^{-1}}\right) =\frac{B^+(q^{-1}t)+qt B^-(qt)}{ (q^2-q^{-2})(t-t^{-1})}\tilde{\mathcal{G}}\left(\frac{q+q^{-1}}{t+t^{-1}}\right), \] \[ \frac{q+q^{-1}}{t+t^{-1}}\mathcal{W}^-\left(\frac{q+q^{-1}}{t+t^{-1}}\right) = \tilde{\mathcal{G}}\left(\frac{q+q^{-1}}{t+t^{-1}}\right) \frac{qt B^+(qt)+B^-(q^{-1}t)}{ (q^2-q^{-2})(t-t^{-1})}, \] \[ \frac{q+q^{-1}}{t+t^{-1}}\mathcal{W}^+\left(\frac{q+q^{-1}}{t+t^{-1}}\right) = \tilde{\mathcal{G}}\left(\frac{q+q^{-1}}{t+t^{-1}}\right) \frac{B^+(qt)+q^{-1}t B^-(q^{-1}t)}{ (q^2-q^{-2})(t-t^{-1})}. \] Here we use \[ \mathcal{W}^-(t)=\sum_{n=0}^\infty \mathcal{W}_{-n}t^n,~~ \mathcal{W}^+(t)=\sum_{n=0}^\infty \mathcal{W}_{n+1}t^n,~~ \tilde{\mathcal G}(t)=\sum_{n=0}^\infty \tilde{\mathcal G}_{n}t^n,~~ \tilde{\mathcal G}_0=-(q-q^{-1})[2]_q^2, \] \[ {B}^-(t)=\sum_{n=0}^\infty {B}_{n\delta+\alpha_0}t^n,~~ {B}^+(t)=\sum_{n=0}^\infty {B}_{n\delta+\alpha_1}t^n. \] They are the first and the second main results of this paper. In this paper, in addition to the two main results mentioned above, the author obtains five main results. Together, the author obtains seven main results. The author introduces alternating generators of \(\mathcal{Z}\) and \(O_q\) and obtains relations between them in the similar way as the first main result.

MSC:

17B35 Universal enveloping (super)algebras
17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
81T25 Quantum field theory on lattices
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Baseilhac, P., Deformed Dolan-Grady relations in quantum integrable models, Nucl. Phys. B, 709, 491-521 (2005) · Zbl 1160.81392
[2] Baseilhac, P., The alternating presentation of \(U_q( \hat{g l_2})\) from Freidel-Maillet algebras, Nucl. Phys. B, 967, Article 115400 pp. (2021) · Zbl 1490.81095
[3] Baseilhac, P., On the second realization for the positive part of \(U_q( \hat{\mathfrak{sl}}_2)\) of equitable type, Preprint · Zbl 1498.16041
[4] Baseilhac, P.; Belliard, S., An attractive basis for the q-Onsager algebra, Preprint · Zbl 1228.81187
[5] Baseilhac, P.; Belliard, S.; Crampé, N., FRT presentation of the Onsager algebras, Lett. Math. Phys., 108, 2189-2212 (2018) · Zbl 1398.81128
[6] Baseilhac, P.; Crampé, N., FRT presentation of classical Askey-Wilson algebras, Lett. Math. Phys., 109, 2187-2207 (2019) · Zbl 1425.81059
[7] Baseilhac, P.; Koizumi, K., A new (in)finite dimensional algebra for quantum integrable models, Nucl. Phys. B, 720, 325-347 (2005) · Zbl 1194.81122
[8] Baseilhac, P.; Kolb, S., Braid group action and root vectors for the q-Onsager algebra, Transform. Groups, 25, 363-389 (2020) · Zbl 1439.81058
[9] Baseilhac, P.; Shigechi, K., A new current algebra and the reflection equation, Lett. Math. Phys., 92, 47-65 (2010) · Zbl 1187.81166
[10] Damiani, I., A basis of type Poincare-Birkoff-Witt for the quantum algebra of \(\hat{\mathfrak{sl}}_2\), J. Algebra, 161, 291-310 (1993) · Zbl 0803.17003
[11] Lu, M.; Wang, W., A Drinfeld type presentation of affine ι quantum groups I: split ADE type, Preprint · Zbl 1514.17017
[12] Onsager, L., Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. (2), 65, 117-149 (1944) · Zbl 0060.46001
[13] Terwilliger, P., Two relations that generalize the q-Serre relations and the Dolan-Grady relations, (Physics and Combinatorics 1999. Physics and Combinatorics 1999, Nagoya (2001), World Scientific Publishing: World Scientific Publishing River Edge, NJ), 377-398 · Zbl 1061.16033
[14] Terwilliger, P., The q-Onsager algebra and the positive part of \(U_q( \hat{\mathfrak{sl}}_2)\), Linear Algebra Appl., 521, 19-56 (2017) · Zbl 1386.17018
[15] Terwilliger, P., An action of the free product \(\mathbb{Z}_2 \star \mathbb{Z}_2 \star \mathbb{Z}_2\) on the q-Onsager algebra and its current algebra, Nucl. Phys. B, 936, 306-319 (2018) · Zbl 1400.81123
[16] Terwilliger, P., The alternating PBW basis for the positive part of \(U_q( \hat{\mathfrak{sl}}_2)\), J. Math. Phys., 60, Article 071704 pp. (2019) · Zbl 1421.82012
[17] Terwilliger, P., The alternating central extension for the positive part of \(U_q( \hat{\mathfrak{sl}}_2)\), Nucl. Phys. B, 947, Article 114729 pp. (2019) · Zbl 1440.81053
[18] Terwilliger, P., A compact presentation for the alternating central extension of the positive part of \(U_q( \hat{\mathfrak{sl}}_2)\), Ars Math. Contemp. (2022) · Zbl 1502.17014
[19] Terwilliger, P., A conjecture concerning the q-Onsager algebra, Nucl. Phys. B, 966, Article 115391 pp. (2021) · Zbl 1487.17036
[20] Terwilliger, P., The alternating central extension of the q-Onsager algebra, Commun. Math. Phys., 387, 1771-1819 (2021) · Zbl 1487.17047
[21] Terwilliger, P., The compact presentation for the alternating central extension of the q-Onsager algebra, Preprint · Zbl 1487.17047
[22] Terwilliger, P., The alternating central extension of the Onsager Lie algebra, Preprint · Zbl 1487.17047
[23] Terwilliger, P., The algebra \(U_q^+\) and its alternating central extension \(\mathcal{U}_q^+\), Preprint
[24] Vidar, M., Tridiagonal pairs of shape (1, 2,1), Linear Algebra Appl., 429, 403-428 (2008) · Zbl 1182.05136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.