×

A Drinfeld type presentation of affine \(\imath\)quantum groups. I: Split ADE type. (English) Zbl 1514.17017

The affine quantum group admits two presentations: the Serre presentation introduced by Drinfeld-Jimbo, and the current presentation, also known as the Drinfeld presentation [V. G. Drinfel’d, Sov. Math., Dokl. 36, No. 2, 212–216 (1988; Zbl 0667.16004); translation from Dokl. Akad. Nauk SSSR 269, 13–17 (1987)]. The isomorphism between these two presentations, stated by V. Drinfeld, was proved by J. Beck [Commun. Math. Phys. 165, No. 3, 555–568 (1994; Zbl 0807.17013)] and I. Damiani [J. Algebra 161, No. 2, 291–310 (1993; Zbl 0803.17003); Publ. Res. Inst. Math. Sci. 48, No. 3, 661–733 (2012; Zbl 1297.17009)].
The authors of this article study the current presentation of the universal \(\imath\)quantum groups \(\widetilde{U}^{\imath}\) of split affine \(ADE\) type. By extending the results of P. Baseilhac and S. Kolb in [Transform. Groups 25, No. 2, 363–389 (2020; Zbl 1439.81058)], the authors established Drinfeld type new relations among the generators of the universal \(q\)-Onsager algebra \(\widetilde{U}^{\imath}(\widehat{sl}_2)\). In the higher rank case the authors used the braid group action on \(\widetilde{U}^{\imath}\), which is realized by reflection functors in \(\imath\)Hall algebras considered in the work [M. Lu and W. Wang, Commun. Math. Phys. 381, No. 3, 799–855 (2021; Zbl 1479.17029)].

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras

References:

[1] Beck, J., Braid group actions and quantum affine algebras, Commun. Math. Phys., 165, 555-568 (1994) · Zbl 0807.17013
[2] Baseilhac, P.; Belliard, S., Generalized q-Onsager algebras and boundary affine Toda field theories, Lett. Math. Phys., 93, 213-228 (2010) · Zbl 1197.81147
[3] Beck, J.; Chari, V.; Pressley, A., An algebraic characterization of the affine canonical basis, Duke Math. J., 99, 455-487 (1999) · Zbl 0964.17013
[4] Baseilhac, P.; Kolb, S., Braid group action and root vectors for the q-Onsager algebra, Transform. Groups, 25, 363-389 (2020) · Zbl 1439.81058
[5] Baumann, P.; Kassel, C., The Hall algebra of the category of coherent sheaves on the projective line, J. Reine Angew. Math., 533, 207-233 (2001) · Zbl 0967.18005
[6] Bao, H.; Kujawa, J.; Li, Y.; Wang, W., Geometric Schur duality of classical type, Transform. Groups, 23, 329-389 (2018) · Zbl 1440.17009
[7] Baseilhac, P.; Shigechi, K., A new current algebra and the reflection equation, Lett. Math. Phys., 92, 47-65 (2010) · Zbl 1187.81166
[8] Bao, H.; Wang, W., A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs, Astérisque, 402 (2018), vii+134 pp. · Zbl 1411.17001
[9] Chari, V.; Hernandez, D., Beyond Kirillov-Reshetikhin modules, (Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications. Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications, Contemp. Math., vol. 506 (2010), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 49-81 · Zbl 1277.17009
[10] Damiani, I., A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of \(\hat{s l}(2)\), J. Algebra, 161, 291-310 (1993) · Zbl 0803.17003
[11] Damiani, I., Drinfeld realization of affine quantum algebras: the relations, Publ. Res. Inst. Math. Sci., 48, 661-733 (2012) · Zbl 1297.17009
[12] Damiani, I., From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: injectivity, Publ. Res. Inst. Math. Sci., 51, 131-171 (2015) · Zbl 1394.17036
[13] Dou, R.; Jiang, Y.; Xiao, J., Hall algebra approach to Drinfeld’s presentation of quantum loop algebras, Adv. Math., 231, 2593-2625 (2012) · Zbl 1262.14039
[14] Drinfeld, V., Quantum Groups, (Proceedings of the International Congress of Mathematicians, Vol. 1, 2. Proceedings of the International Congress of Mathematicians, Vol. 1, 2, Berkeley, Calif., 1986 (1987), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 798-820 · Zbl 0667.16003
[15] Drinfeld, V., A new realization of Yangians and quantized affine algebras, Sov. Math. Dokl., 36, 212-216 (1988) · Zbl 0667.16004
[16] Hernandez, D.; Leclerc, B., Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math., 701, 77-126 (2015) · Zbl 1315.17011
[17] Jimbo, M., A q-difference analogue of \(U(\mathfrak{g})\) and the Yang-Baxter equation, Lett. Math. Phys., 10, 63-69 (1985) · Zbl 0587.17004
[18] Jantzen, J. C., Lectures on Quantum Groups, Grad. Studies in Math., vol. 6 (1996), Amer. Math. Soc.: Amer. Math. Soc. Providence · Zbl 0842.17012
[19] Kapranov, M., Eisenstein series and quantum affine algebras, J. Math. Sci., 84, 1311-1360 (1997) · Zbl 0929.11015
[20] Kolb, S., Quantum symmetric Kac-Moody pairs, Adv. Math., 267, 395-469 (2014) · Zbl 1300.17011
[21] Kolb, S.; Pellegrini, J., Braid group actions on coideal subalgebras of quantized enveloping algebras, J. Algebra, 336, 395-416 (2011) · Zbl 1266.17011
[22] Letzter, G., Symmetric pairs for quantized enveloping algebras, J. Algebra, 220, 729-767 (1999) · Zbl 0956.17007
[23] Letzter, G., Coideal Subalgebras and Quantum Symmetric Pairs, New Directions in Hopf Algebras, MSRI Publications, vol. 43, 117-166 (2002), Cambridge Univ. Press, (Cambridge) · Zbl 0990.00022
[24] Li, Y., Quiver varieties and symmetric pairs, Represent. Theory, 23, 1-56 (2019) · Zbl 1403.16009
[25] Lu, M.; Ruan, S., ıHall algebras of weighted projective lines and quantum symmetric pairs
[26] Lu, M.; Ruan, S.; Wang, W., ıHall algebra of the projective line and q-Onsager algebra
[27] Lu, M.; Wang, W., Hall algebras and quantum symmetric pairs I: foundations, Proc. Lond. Math. Soc. (2021), in press
[28] Lu, M.; Wang, W., Hall algebras and quantum symmetric pairs of Kac-Moody type · Zbl 1533.17020
[29] Lu, M.; Wang, W., Hall algebras and quantum symmetric pairs II: reflection functors, Commun. Math. Phys., 381, 799-855 (2021) · Zbl 1479.17029
[30] Lu, M.; Wang, W., Braid group symmetries on quasi-split ıquantum groups via ıHall algebras
[31] Lusztig, G., Affine Hecke algebras and their graded version, J. Am. Math. Soc., 2, 599-625 (1989) · Zbl 0715.22020
[32] Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Am. Math. Soc., 3, 447-498 (1990) · Zbl 0703.17008
[33] Lusztig, G., Introduction to Quantum Groups (2010), Birkhäuser: Birkhäuser Boston, Modern Birkhäuser Classics, reprint of the 1994 edition · Zbl 1246.17018
[34] Molev, A., Yangians and Classical Lie Algebras, Mathematical Surveys and Monographs, vol. 143 (2007), AMS · Zbl 1141.17001
[35] Nakajima, H., Quiver varieties and finite dimensional representations of quantum affine algebras, J. Am. Math. Soc., 14, 145-238 (2000) · Zbl 0981.17016
[36] Schiffmann, O., Noncommutative projective curves and quantum loop algebras, Duke Math. J., 121, 113-168 (2004) · Zbl 1054.17021
[37] C. Su, W. Wang, Equivariant K-theory and affine ıquantum groups, in preparation.
[38] Vasserot, E., Affine quantum groups and equivariant K-theory, Transform. Groups, 3, 269-299 (1998) · Zbl 0969.17009
[39] Watanabe, H., Classical weight modules over ıquantum groups, J. Algebra, 578, 241-302 (2021) · Zbl 1486.17028
[40] Zhang, W., A Drinfeld type presentation of affine ıquantum groups II: split BCFG type
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.