×

The Kato square root problem on locally uniform domains. (English) Zbl 1494.47021

Summary: We obtain the Kato square root estimate for second order elliptic operators in divergence form with mixed boundary conditions on an open and possibly unbounded set in \(\mathbb{R}^d\) under two simple geometric conditions: The Dirichlet boundary part is Ahlfors-David regular and a quantitative connectivity property in the spirit of locally uniform domains holds near the Neumann boundary part. This improves upon all existing results even in the case of pure Dirichlet or Neumann boundary conditions. We also treat elliptic systems with lower order terms. As a side product, we establish new regularity results for the fractional powers of the Laplacian with boundary conditions in our geometric setup.

MSC:

47A60 Functional calculus for linear operators
35J47 Second-order elliptic systems
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26A33 Fractional derivatives and integrals

References:

[1] Achache, M.; Ouhabaz, E. M., Lions’ maximal regularity problem with \(H^{\frac{ 1}{ 2}} \)-regularity in time, J. Differ. Equ., 266, 6, 3654-3678 (2019) · Zbl 1412.35190
[2] Adams, D. R.; Hedberg, L. I., Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, vol. 314 (1996), Springer: Springer Berlin
[3] Auscher, P.; Egert, M., Mixed boundary value problems on cylindrical domains, Adv. Differ. Equ., 22, 1-2, 101-168 (2017) · Zbl 1364.35090
[4] Auscher, P.; Tchamitchian, P., Square roots of elliptic second order divergence operators on strongly Lipschitz domains: \( L^2\) theory, J. Anal. Math., 90, 1-12 (2003) · Zbl 1173.35420
[5] Auscher, P.; Hofmann, S.; McIntosh, A.; Tchamitchian, P., The Kato square root problem for higher order elliptic operators and systems on \(\mathbb{R}^n\), J. Evol. Equ., 1, 4, 361-385 (2001) · Zbl 1019.35029
[6] Auscher, P.; Hofmann, S.; Lacey, M.; McIntosh, A.; Tchamitchian, P., The solution of the Kato square root problem for second order elliptic operators on \(\mathbb{R}^n\), Ann. Math. (2), 156, 2, 633-654 (2002) · Zbl 1128.35316
[7] Auscher, P.; Axelsson, A.; McIntosh, A., Solvability of elliptic systems with square integrable boundary data, Ark. Mat., 48, 2, 253-287 (2010) · Zbl 1205.35082
[8] Auscher, P.; Badr, N.; Haller-Dintelmann, R.; Rehberg, J., The square root problem for second order divergence form operators with mixed boundary conditions on \(L^p\), J. Evol. Equ., 15, 1, 165-208 (2015) · Zbl 1333.47034
[9] Auscher, P.; Bortz, S.; Egert, M.; Saari, O., Nonlocal self-improving properties: a functional analytic approach, Tunis. J. Math., 1, 2, 151-183 (2019) · Zbl 1409.35043
[10] Axelsson, A.; Keith, S.; McIntosh, A., The Kato square root problem for mixed boundary value problems, J. Lond. Math. Soc. (2), 74, 1, 113-130 (2006) · Zbl 1123.35013
[11] Axelsson, A.; Keith, S.; McIntosh, A., Quadratic estimates and functional calculi of perturbed Dirac operators, Invent. Math., 163, 3, 455-497 (2006) · Zbl 1094.47045
[12] Bechtel, S.; Brown, R. M.; Haller-Dintelmann, R.; Tolksdorf, P., Extendability of functions with partially vanishing trace (2019), Preprint
[13] Bechtel, S.; Egert, M., Interpolation theory for Sobolev functions with partially vanishing trace on irregular open sets, J. Fourier Anal. Appl., 25, 5, 2733-2781 (2019) · Zbl 1435.46016
[14] Bonifacius, L.; Neitzel, I., Second order optimality conditions for optimal control of quasilinear parabolic equations, Math. Control Relat. Fields, 8, 1, 1-34 (2018) · Zbl 1405.35095
[15] Brewster, K.; Mitrea, D.; Mitrea, I.; Mitrea, M., Extending Sobolev functions with partially vanishing traces from locally \((\varepsilon, \delta)\)-domains and applications to mixed boundary problems, J. Funct. Anal., 266, 7, 4314-4421 (2014) · Zbl 1312.46042
[16] Egert, M., On Kato’s conjecture and mixed boundary conditions (2015), Sierke Verlag: Sierke Verlag Göttingen, Available online · Zbl 1336.35002
[17] Egert, M., \( L^p\)-estimates for the square root of elliptic systems with mixed boundary conditions, J. Differ. Equ., 265, 4, 1279-1323 (2018) · Zbl 1513.35218
[18] Egert, M.; Haller-Dintelmann, R.; Tolksdorf, P., The Kato Square Root Problem for mixed boundary conditions, J. Funct. Anal., 267, 5, 1419-1461 (2014) · Zbl 1296.35058
[19] Egert, M.; Haller-Dintelmann, R.; Tolksdorf, P., The Kato Square Root Problem follows from an extrapolation property of the Laplacian, Publ. Mat., 60, 2, 451-483 (2016) · Zbl 1349.35112
[20] Fackler, S., Nonautonomous maximal \(L^p\)-regularity under fractional Sobolev regularity in time, Anal. PDE, 11, 5, 1143-1169 (2018) · Zbl 1390.35034
[21] Haase, M., The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, vol. 169 (2006), Birkhäuser: Birkhäuser Basel · Zbl 1101.47010
[22] Haller-Dintelmann, R.; Rehberg, J., Maximal parabolic regularity for divergence operators including mixed boundary conditions, J. Differ. Equ., 247, 5, 1354-1396 (2009) · Zbl 1178.35210
[23] Hytönen, T.; van Neerven, J.; Veraar, M.; Weis, L., Analysis in Banach Spaces. Vol. I. Martingales and Littlewood-Paley Theory, Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 63 (2016), Springer: Springer Cham · Zbl 1366.46001
[24] Hytönen, T.; van Neerven, J.; Veraar, M.; Weis, L., Analysis in Banach Spaces. Vol. II. Probabilistic Methods and Operator Theory, Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 67 (2016), Springer: Springer Cham · Zbl 1366.46001
[25] Janson, S.; Nilsson, P.; Peetre, J., Notes on Wolff’s note on interpolation spaces, J. Lond. Math. Soc. (3), 48, 2, 283-299 (1984) · Zbl 0532.46046
[26] Jones, P. W., Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math., 147, 1/2, 71-88 (1981) · Zbl 0489.30017
[27] Jonsson, A.; Wallin, H., Function spaces on subsets of \(\mathbb{R}^n\), Math. Rep., 2, 1 (1984) · Zbl 0875.46003
[28] Kato, T., Perturbation Theory for Linear Operators, Classics in Mathematics (1995), Springer: Springer Berlin · Zbl 0836.47009
[29] McIntosh, A., On the comparability of \(A^{1 / 2}\) and \(A^{\ast 1 / 2}\), Proc. Am. Math. Soc., 32, 430-434 (1972) · Zbl 0248.47020
[30] McIntosh, A., Operators which have an \(H^\infty\) functional calculus, (Miniconference on Operator Theory and Partial Differential Equations. Miniconference on Operator Theory and Partial Differential Equations, Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14 (1986), Austral. Nat. Univ.: Austral. Nat. Univ. Canberra), 210-231 · Zbl 0634.47016
[31] Pryde, A. J., Second order elliptic equations with mixed boundary conditions, J. Math. Anal. Appl., 80, 1, 203-244 (1981) · Zbl 0467.35042
[32] Sickel, W., Pointwise multipliers of Lizorkin-Triebel spaces, (The Maz’ya Anniversary Collection. The Maz’ya Anniversary Collection, Oper. Theory Adv. Appl., vol. 110 (1999), Birkhäuser: Birkhäuser Basel) · Zbl 0954.46017
[33] Šneĭberg, I., Spectral properties of linear operators in interpolation families of Banach spaces, Mat. Issled., 9, 2, 214-229 (1974), 254-255 · Zbl 0314.46033
[34] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, vol. 18 (1978), North-Holland Publishing: North-Holland Publishing Amsterdam · Zbl 0387.46033
[35] Triebel, H., Function Spaces and Wavelets on Domains, EMS Tracts in Mathematics, vol. 17 (2008), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich · Zbl 1158.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.