×

Interpolation theory for Sobolev functions with partially vanishing trace on irregular open sets. (English) Zbl 1435.46016

Summary: A full interpolation theory for Sobolev functions with smoothness between 0 and 1 and vanishing trace on a part of the boundary of an open set is established. Geometric assumptions are mostly of measure theoretic nature and reach beyond Lipschitz regular domains. Previous results were limited to regular geometric configurations or Hilbertian Sobolev spaces. Sets with porous boundary and their characteristic multipliers on smoothness spaces play a major role in the arguments.

MSC:

46B70 Interpolation between normed linear spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften, vol. 314. Springer, Berlin (1996)
[2] Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics, vol. 96. Birkhäuser, Basel (2001) · Zbl 0978.34001
[3] Auscher, P., Badr, N., Haller-Dintelmann, R., Rehberg, J.: The square root problem for second order divergence form operators with mixed boundary conditions on \[{L}^p\] Lp. J. Evol. Equ. 15(1), 165-208 (2015) · Zbl 1333.47034
[4] Axelsson, A., Keith, S., McIntosh, A.: The Kato square root problem for mixed boundary value problems. J. Lond. Math. Soc. 74, 113-130 (2006) · Zbl 1123.35013
[5] Bechtel, S.: The Kato Square Root Property for Mixed Boundary Conditions. Master’s thesis, TU Darmstadt, (2017). http://www3.mathematik.tu-darmstadt.de/index.php?id=3305
[6] Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976) · Zbl 0344.46071
[7] Bonifacius, L., Neitzel, I.: Second order optimality conditions for optimal control of quasilinear parabolic equations. Math. Control Relat. Fields 8(1), 1-34 (2018) · Zbl 1405.35095
[8] Brewster, K., Mitrea, D., Mitrea, I., Mitrea, M.: Extending Sobolev functions with partially vanishing traces from locally \[(\varepsilon,\delta )\](ε,δ)-domains and applications to mixed boundary problems. J. Funct. Anal. 266(7), 4314-4421 (2014) · Zbl 1312.46042
[9] Cwikel, M.: Complex interpolation spaces, a discrete definition and reiteration. Indiana Univ. Math. J. 27(6), 1005-1009 (1978) · Zbl 0409.46067
[10] Denk, R., Hieber, M., Prüss, J.: \[{\cal{R}}\] R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, 788 (2003) · Zbl 1274.35002
[11] Disser, K.: Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions. Analysis 35(4), 309-317 (2015) · Zbl 1327.35198
[12] Disser, K., Rehberg, J.: The 3D transient semiconductor equations with gradient-dependent and interfacial recombination. arXiv preprint, available at https://arxiv.org/abs/1805.01348 · Zbl 1425.35097
[13] Disser, K., Meyries, M., Rehberg, J.: A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces. J. Math. Anal. Appl. 430(2), 1102-1123 (2015) · Zbl 1327.35138
[14] Dyda, B., Vähäkangas, A.: A framework for fractional Hardy inequalities. Ann. Acad. Sci. Fenn. Math. 39(2), 675-689 (2014) · Zbl 1320.26023
[15] Egert, M., Tolksdorf, P.: Characterizations of Sobolev functions that vanish on a part of the boundary. Discret. Contin. Dyn. Syst. Ser. S 10(4), 729-743 (2017) · Zbl 1378.46024
[16] Egert, M., Haller-Dintelmann, R., Tolksdorf, P.: The Kato Square Root Problem for mixed boundary conditions. J. Funct. Anal. 267(5), 1419-1461 (2014) · Zbl 1296.35058
[17] Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969) · Zbl 0176.00801
[18] Griepentrog, J.A., Gröger, K., Kaiser, H.-C., Rehberg, J.: Interpolation for function spaces related to mixed boundary value problems. Math. Nachr. 241, 110-120 (2002) · Zbl 1010.46021
[19] Grisvard, P.: Équations différentielles abstraites. Ann. Sci. Écol. Norm. Supér. 2, 311-395 (1969) · Zbl 0193.43502
[20] Gröger, K.: A \[W^{1, p}\] W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283(4), 679-687 (1989) · Zbl 0646.35024
[21] Hajłasz, P., Koskela, P., Tuominen, H.: Sobolev embeddings, extensions and measure density condition. J. Funct. Anal. 254(5), 1217-1234 (2008) · Zbl 1136.46029
[22] Haller-Dintelmann, R., Rehberg, J.: Maximal parabolic regularity for divergence operators including mixed boundary conditions. J. Differ. Equ. 247(5), 1354-1396 (2009) · Zbl 1178.35210
[23] Haller-Dintelmann, R., Jonsson, A., Knees, D., Rehberg, J.: Elliptic and parabolic regularity for second-order divergence operators with mixed boundary conditions. Math. Methods Appl. Sci. 39(17), 5007-5026 (2016) · Zbl 1368.35054
[24] Heinonen, J.: Lectures on Analysis on Metric Spaces Universitext. Springer, New York (2001) · Zbl 0985.46008
[25] Janson, S., Nilsson, P., Peetre, J.: Notes on Wolff’s note on interpolation spaces. Proc. Lond. Math. Soc. 48(2), 283-299 (1984) · Zbl 0532.46046
[26] Jawerth, B., Frazier, M.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34-170 (1990) · Zbl 0716.46031
[27] Jonsson, A., Wallin, H.: Function spaces on subsets of \[{{\mathbb{R}}}^nRn\]. Math. Rep. 2(1), (1984) · Zbl 0875.46003
[28] Lehrbäck, J.: Weighted Hardy inequalities and the size of the boundary. Manuscr. Math. 127(2), 249-273 (2008) · Zbl 1181.46025
[29] Lehrbäck, J., Tuominen, H.: A note on the dimensions of Assouad and Aikawa. J. Math. Soc. Jpn. 65(2), 343-356 (2013) · Zbl 1279.54022
[30] Luukkainen, J.: Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. J. Korean Math. Soc. 35(1), 23-76 (1998) · Zbl 0893.54029
[31] Meinlschmidt, H., Meyer, C., Rehberg, J.: Optimal control of the thermistor problem in three spatial dimensions, Part 1: Existence of optimal solutions. SIAM J. Control Optim. 55(5), 2876-2904 (2017) · Zbl 1516.35242
[32] Meinlschmidt, H., Meyer, C., Rehberg, J.: Optimal control of the thermistor problem in three spatial dimensions, Part 2: Optimality conditions. SIAM J. Control Optim. 55(4), 2368-2392 (2017) · Zbl 1386.35227
[33] Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer Monographs in Mathematics. Springer, Berlin (2012) · Zbl 1246.35005
[34] Rychkov, V.S.: Linear extension operators for restrictions of function spaces to irregular open sets. Stud. Math. 140(2), 141-162 (2000) · Zbl 0972.46018
[35] Seeley, R.: Interpolation in \[L^p\] Lp with boundary conditions. Stud. Math. 44, 44-60 (1972) · Zbl 0237.46041
[36] Shvartsman, P.: Local approximations and intrinsic characterization of spaces of smooth functions on regular subsets of \[{{\mathbb{R}}}^nRn\]. Math. Nachr. 279(11), 1212-1241 (2006) · Zbl 1108.46030
[37] Sickel, W., Pointwise multipliers of Lizorkin-Triebel spaces, No. 110 (1999), Basel · Zbl 0954.46017
[38] Simon, J.: Sobolev, Besov and Nikol’skii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval. Ann. Mater. Pura Appl. 157, 117-148 (1990) · Zbl 0727.46018
[39] ter Elst, A.F.M., Rehberg, J.: Hölder estimates for second-order operators on domains with rough boundary. Adv. Differ. Equ. 20(3-4), 299-360 (2015) · Zbl 1316.35110
[40] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library, vol. 18. North-Holland, Amsterdam (1978) · Zbl 0387.46033
[41] Triebel, H.: A note on function spaces in rough domains. Tr. Mat. Inst. Steklova 293, 346-351 (2016) · Zbl 1361.46034
[42] Väisälä, J.: Porous sets and quasisymmetric maps. Trans. Am. Math. Soc. 299(2), 525-533 (1987) · Zbl 0617.30025
[43] Wolff, TH, A note on interpolation spaces, No. 908 (1982), Berlin · Zbl 0517.46054
[44] Yeh, J.: Real Analysis. World Scientific Publishing, Hackensack (2006) · Zbl 1098.28002
[45] Zhou, Y.: Fractional Sobolev extension and imbedding. Trans. Am. Math. Soc. 367(2), 959-979 (2015) · Zbl 1320.46038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.