×

Anticanonically balanced metrics on Fano manifolds. (English) Zbl 1494.14040

Consider a Kähler-Einstein Fano manifold with no nontrivial holomorphic vector field. The main result of the paper says that there exists a sequence of anticanonically balanced metrics that converge smoothly to the Kähler-Einstein metric. It was known from the work of R. J. Berman et al. [Publ. Math., Inst. Hautes Étud. Sci. 117, 179–245 (2013; Zbl 1277.32049)] the weak convergence of the sequence of anticanonically balanced metrics. Introducing new techniques, the paper improves this result by showing the smooth convergence using Berezin-Toeplitz quantization. Moreover, the proof provides an estimate of the first positive eigenvalue of the Laplacian associated to the Kähler-Einstein metric, which confirms a computation of S. K. Donaldson [Pure Appl. Math. Q. 5, No. 2, 571–618 (2009; Zbl 1178.32018)] providing an estimate for the speed of convergence of the iterative method.

MSC:

14J45 Fano varieties
32Q20 Kähler-Einstein manifolds
53D50 Geometric quantization

References:

[1] Aubin, T., Équations de type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math., 102, 63-95 (1978) · Zbl 0374.53022
[2] Bando, S., Mabuchi, T., Uniqueness of Einstein Kähler metrics modulo connected group actions. In: Algebraic Geometry, Sendai, Adv. Stud. Pure Math., Mathematical Society of Japan, vol. 1987, pp. 11-40 (1985) · Zbl 0641.53065
[3] Berman, RJ, Relative Kähler-Ricci flows and their quantization, Anal. PDE, 6, 1, 131-180 (2013) · Zbl 1282.14069 · doi:10.2140/apde.2013.6.131
[4] Berman, RJ; Boucksom, S.; Guedj, V.; Zeriahi, A., A variational approach to complex Monge-Ampère equations, Publ. Sci. IHES, 117, 2, 179-245 (2013) · Zbl 1277.32049 · doi:10.1007/s10240-012-0046-6
[5] Berman, R.J., Witt Nyström, D.: Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons (2014). arXiv:1401.8264
[6] Berndtsson, B., Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., 169, 2, 531-560 (2009) · Zbl 1195.32012 · doi:10.4007/annals.2009.169.531
[7] Berndtsson, B., Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differential Geom., 81, 3, 457-482 (2009) · Zbl 1187.53076 · doi:10.4310/jdg/1236604342
[8] Bordemann, M.; Meinrenken, E.; Schlichenmaier, M., Toeplitz quantization of Kähler manifolds and \({\rm gl}(N), N\rightarrow \infty\) limits, Comm. Math. Phys., 165, 2, 281-296 (1994) · Zbl 0813.58026 · doi:10.1007/BF02099772
[9] Bourguignon, J-P; Li, P.; Yau, S-T, Upper bound for the first eigenvalue of algebraic submanifolds, Comment. Math. Helv., 69, 2, 199-207 (1994) · Zbl 0814.53040 · doi:10.1007/BF02564482
[10] Boutet de Monvel, L., Guillemin, V.: The spectral theory of Toeplitz operators. In: Annals of Mathematics Studies, vol. 99, University of Tokyo Press, Tokyo, Princeton University Press, Princeton (1981) · Zbl 0469.47021
[11] Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegö. Astérisque, 123-164, 34-35 (1976) · Zbl 0344.32010
[12] Catlin, D.: The Bergman Kernel and a Theorem of Tian. In: Analysis and Geometry in Several Complex Variables, Trends in Mathematics, Birkhauser, Boston, pp. 1-23 (1999) · Zbl 0941.32002
[13] Chen, X.; Donaldson, S.; Sun, S., Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \(2\pi\) and completion of the main proof, J. Amer. Math. Soc., 28, 235-278 (2015) · Zbl 1311.53059 · doi:10.1090/S0894-0347-2014-00801-8
[14] Dai, X.; Liu, K.; Ma, X., On the asymptotic expansion of Bergman kernel, J. Differential Geom., 72, 1, 1-41 (2006) · Zbl 1099.32003 · doi:10.4310/jdg/1143593124
[15] Donaldson, SK, Scalar curvature and projective embeddings. I, J. Differential Geom., 59, 3, 479-522 (2001) · Zbl 1052.32017 · doi:10.4310/jdg/1090349449
[16] Donaldson, SK, Scalar curvature and projective embeddings. II, Q. J. Math., 56, 3, 345-356 (2005) · Zbl 1159.32012 · doi:10.1093/qmath/hah044
[17] Donaldson, SK, Some numerical results in complex differential geometry, Pure Appl. Math. Q., 5, 2, 571-618 (2009) · Zbl 1178.32018 · doi:10.4310/PAMQ.2009.v5.n2.a2
[18] Fine, J., Quantization and the Hessian of Mabuchi energy, Duke Math. J., 161, 14, 2753-2798 (2012) · Zbl 1262.32024 · doi:10.1215/00127094-1813524
[19] Futaki, A., La Fuente-Gravy, L., ICCM: Proceedings. Deformation Quantization and Kähler Geometry with Moment Maps, vol. 2019, National Taiwan University, pp. 11-40 (2018)
[20] Futaki, A.; Ono, H., Cahen-Gutt moment map, closed Fedosov star product and structure of the automorphism group, J. Symplectic Geom., 18, 1, 123-145 (2020) · Zbl 1436.53061 · doi:10.4310/JSG.2020.v18.n1.a3
[21] Gauduchon, P.: Calabi’s Extremal Kähler Metrics: An Elementary Introduction (in preparation)
[22] Ioos, L.: Balanced metrics for Kähler-Ricci solitons and quantized Futaki invariants. J. Funct. Anal. 282(8), 109400 (2022) · Zbl 1495.53086
[23] Ioos, L., Polterovich, L.: Quantization of symplectic fibrations and canonical metrics (2021). arXiv:2112.00419 · Zbl 1479.53088
[24] Ioos, L.; Kaminker, V.; Polterovich, L.; Shmoish, D., Spectral aspects of the Berezin transform, Ann. H. Lebesgue, 3, 1343-1387 (2020) · Zbl 1458.53091 · doi:10.5802/ahl.63
[25] Keller, J., Ricci iterations on Kähler classes, J. Inst. Math. Jussieu, 8, 4, 743-768 (2009) · Zbl 1178.32020 · doi:10.1017/S1474748009000103
[26] Keller, J.; Meyer, J.; Seyyedali, R., Quantization of the Laplacian operator on vector bundles, I, Math. Ann., 366, 3-4, 865-907 (2016) · Zbl 1353.53093 · doi:10.1007/s00208-015-1355-0
[27] Lichnerowicz, A., Isométries et transformations analytiques d’une variété kählérienne compacte, Bull. Soc. Math. France, 87, 427-437 (1959) · Zbl 0192.28403 · doi:10.24033/bsmf.1537
[28] Liu, K., Ma, X.: A remark on: “Some numerical results in complex differential geometry” by S. K. Donaldson. Math. Res. Lett. 14(2), 165-171 (2007) · Zbl 1175.32014
[29] Lu, Z., On the lower order terms of the asymptotics expansion of Tian-Yau-Zelditch, Amer. J. Math., 122, 2, 235-273 (2000) · Zbl 0972.53042 · doi:10.1353/ajm.2000.0013
[30] Ma, X.; Marinescu, G., Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics (2007), Basel: Birkhäuser Verlag, Basel · Zbl 1135.32001
[31] Ma, X.; Marinescu, G., Toeplitz operators on symplectic manifolds, J. Geom. Anal., 18, 2, 565-611 (2008) · Zbl 1152.81030 · doi:10.1007/s12220-008-9022-2
[32] Ma, X.; Marinescu, G., Exponential estimate for the asymptotics of Bergman kernels, Math. Ann., 362, 1327-1347 (2015) · Zbl 1337.32011 · doi:10.1007/s00208-014-1137-0
[33] Matsushima, Y., Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne, Nagoya Math. J., 11, 145-150 (1957) · Zbl 0091.34803 · doi:10.1017/S0027763000002026
[34] Phong, DH; Sturm, J., Scalar curvature, moment maps, and the Deligne pairing, Amer. J. Math., 126, 3, 693-712 (2004) · Zbl 1077.53068 · doi:10.1353/ajm.2004.0019
[35] Polterovich, L., Quantum unsharpness and symplectic rigidity, Lett. Math. Phys., 102, 245-264 (2012) · Zbl 1261.81078 · doi:10.1007/s11005-012-0564-7
[36] Polterovich, L., Symplectic geometry of quantum noise, Comm. Math. Phys., 327, 481-519 (2014) · Zbl 1291.81198 · doi:10.1007/s00220-014-1937-9
[37] Sano, Y., Numerical algorithm for finding balanced metrics, Osaka J. Math., 43, 3, 679-688 (2006) · Zbl 1108.32014
[38] Székelyhidi, G., An Introduction to Extremal Kähler Metrics, Graduate Studies in Mathematics (2014), Providence: American Mathematical Society, Providence · Zbl 1298.53002 · doi:10.1090/gsm/152
[39] Takahashi, R., Asymptotic stability for Kähler-Ricci solitons, Math. Z., 281, 3-4, 1021-1034 (2015) · Zbl 1329.53067 · doi:10.1007/s00209-015-1518-4
[40] Takahashi, R., Geometric quantization of coupled Kähler-Einstein metrics, Anal. PDE, 14, 6, 1817-1849 (2021) · Zbl 1478.32054 · doi:10.2140/apde.2021.14.1817
[41] Tian, G., On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., 32, 1, 99-130 (1990) · Zbl 0706.53036 · doi:10.4310/jdg/1214445039
[42] Tian, G., Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 130, 1-37 (1997) · Zbl 0892.53027 · doi:10.1007/s002220050176
[43] Tian, G., K-stability and Kähler-Einstein Metrics, Comm. Pure Appl. Math., 68, 7, 1085-1156 (2015) · Zbl 1318.14038 · doi:10.1002/cpa.21578
[44] Tsuji, H., Dynamical construction of Kähler-Einstein metrics, Nagoya Math. J., 199, 107-122 (2010) · Zbl 1205.32021 · doi:10.1215/00277630-2010-005
[45] Wang, X., Canonical metrics on stable vector bundles, Comm. Anal. Geom., 13, 2, 253-285 (2005) · Zbl 1093.32008 · doi:10.4310/CAG.2005.v13.n2.a1
[46] Yau, ST, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., 31, 3, 339-411 (1978) · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
[47] Zelditch, S., Szegö kernels and a theorem of Tian, Int. Math. Res. Not. IMRN, 6, 317-331 (1998) · Zbl 0922.58082 · doi:10.1155/S107379289800021X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.