×

Quantization of the Laplacian operator on vector bundles. I. (English) Zbl 1353.53093

Consider a holomorphic vector bundle \(E\) of rank \(r\) over a projective manifold of complex dimension \(n\) polarized by an ample line bundle \(L\). Fix Hermitian metrics \(h\) on \(E\) and \(\sigma \) on \(L\) whose curvature defines a Kähler form \(\omega \) on \(X\). Given these data, one can consider the induced Bochner Laplacian over the smooth endomorphisms of \(E\): \(\Delta ^E:C^{\infty }(X, \mathrm{End}(E))\rightarrow C^{\infty }(X, \mathrm{End}(E))\). In this paper, it is proved that certain operators of the form \(P^{\ast}_kP_k\) provide a quantization of \(\Delta ^E\). It is important to note that \(P^{\ast}_kP_k\) lives as an operator on a finite-dimensional space and is defined in a purely algebraic way.

MSC:

53D50 Geometric quantization
47F05 General theory of partial differential operators
35P20 Asymptotic distributions of eigenvalues in context of PDEs
53D20 Momentum maps; symplectic reduction
32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators
14L24 Geometric invariant theory

References:

[1] Bouche, T.: Convergence de la métrique de Fubini-Study d’un fibré linéaire positif. Ann. Inst. Fourier (Grenoble) 40(1), 117-130 (1990) · Zbl 0685.32015 · doi:10.5802/aif.1206
[2] Cao, H.-D., Keller, J.: On the Calabi problem: a finite-dimensional approach. J. Eur. Math. Soc. (JEMS) 15(3), 1033-1065 (2013) · Zbl 1308.32025 · doi:10.4171/JEMS/385
[3] Catlin, D.:The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997), pp. 1-23 (1999) · Zbl 0941.32002
[4] Della Vedova, A.: A note on Berezin-Toeplitz quantization of the Laplace operator. arXiv:1505.03990 (2015) · Zbl 1323.32014
[5] Donaldson, S.K.: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59(3), 479-522 (2001) · Zbl 1052.32017
[6] Donaldson, S.K.: Some numerical results in complex differential geometry. Special Issue: In honor of Friedrich Hirzebruch. Part 1. Pure Appl. Math. Q. 5(2), 571-618 (2009) · Zbl 1178.32018
[7] Donaldson, S.K.: Remarks on gauge theory, complex geometry and 4-manifold topology, fields Medallists’ lectures, pp. 384-403 (1997) · Zbl 1093.32008
[8] Fine, J.: Calabi flow and projective embeddings. With an appendix by Kefeng Liu and Xiaonan Ma. J. Differ. Geom. 84(3), 489-523 (2010) · Zbl 0685.32015
[9] Fine, J.: Quantization and the Hessian of Mabuchi energy. Duke Math. J. 161(14), 2753-2798 (2012) · Zbl 1262.32024 · doi:10.1215/00127094-1813524
[10] Grinberg, E.L.: Spherical harmonics and integral geometry on projective spaces. Trans. Am. Math. Soc. 279(1), 187-203 (1983) · Zbl 0518.43006 · doi:10.1090/S0002-9947-1983-0704609-1
[11] Keller, J.: Ricci iterations on Kähler classes. J. Inst. Math. Jussieu 8(4), 743-768 (2009) · Zbl 1178.32020 · doi:10.1017/S1474748009000103
[12] Liu, K., Ma, X.: A remark on: Some numerical results in complex differential geometry. arXiv:math/0512625 by S. K. Donaldson. Math. Res. Lett. 14(2), 165-171 (2007) · Zbl 1175.32014
[13] Lu, Z.: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Am. J. Math. 122(2), 235-273 (2000) · Zbl 0972.53042 · doi:10.1353/ajm.2000.0013
[14] Ma, X., Marinescu, G.: Berezin-Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662, 1-56 (2012) · Zbl 1251.47030
[15] Ma, X., Marinescu, G.: Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, vol. 254. Birkhäuser Verlag, Basel (2007) · Zbl 1135.32001
[16] Griffiths, P., Harris, J.: Principles of algebraic geometry, Wiley Classics Library. John Wiley & Sons Inc., New York (1994) (Reprint of the 1978 original) · Zbl 0836.14001
[17] Wang, X.: Balance point and stability of vector bundles over a projective manifold. Math. Res. Lett. 9(2-3), 393-411 (2002) · Zbl 1011.32016 · doi:10.4310/MRL.2002.v9.n3.a12
[18] Wang, X.: Canonical metrics on stable vector bundles. Comm. Anal. Geom. 13(2), 253-285 (2005) · Zbl 1093.32008 · doi:10.4310/CAG.2005.v13.n2.a1
[19] Zelditch, S.: Szegő kernels and a thm of Tian. Int. Math. Res. Notices 6, 317-331 (1998). doi:10.1155/S107379289800021X · Zbl 0922.58082 · doi:10.1155/S107379289800021X
[20] Zhang, S.: Heights and reductions of semi-stable varieties. Compos. Math. 104(1), 77-105 (1996) · Zbl 0924.11055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.