×

Generalized exponential rational function for distinct types solutions to the conformable resonant Schrödinger’s equation. (English) Zbl 1492.81049

Summary: The generalized exponential rational function method, which is one of the strong methods for solving nonlinear evolution equations, is applied to the conformable resonant nonlinear Schrödinger’s equation in this study. This equation plays a significant role in nonlinear fiber optics. It also has many important applications in photonic crystal fibers. The procedure implemented in this paper can be recommended in solving other equations in the field. All calculations and graphing are performed using powerful symbolic computational packages in Mathematica software. All calculations and graphing are performed using powerful symbolic computational packages in Mathematica software.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
41A20 Approximation by rational functions
35R11 Fractional partial differential equations
78A60 Lasers, masers, optical bistability, nonlinear optics
78A50 Antennas, waveguides in optics and electromagnetic theory
82D25 Statistical mechanics of crystals
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] Akbulut, A. and Kaplan, M., Comput. Math. Appl.75, 876 (2018). · Zbl 1409.35208
[2] Chen, C. and Jiang, Y. L., Comput. Math. Appl.75, 2978 (2018). · Zbl 1415.35275
[3] Yépez-Martínez, H., Gómez-Aguilar, J. F. and Atangana, A., Math. Model. Nat. Phenomena13(1), 1 (2018). · Zbl 1458.35463
[4] Kurt, A., Tasbozan, O. and Cenesiz, Y., Bull. Math. Sci. Appl.17, 17 (2016).
[5] Cenesiz, Y. and Kurt, A., J. Appl. Math., Stat. Informatics12, 41 (2016). · Zbl 1524.35680
[6] Kurt, A., Tasbozan, O. and Baleanu, D., Opt. Quantum Electron.49, 1 (2017).
[7] Tasbozan, O.et al., Open Phys.15, 647 (2017).
[8] Polyanin, A. D. and Sorokin, V. G., J. Math. Anal. Appl.494, 124619 (2021). · Zbl 1461.35088
[9] Nabti, A. and Ghanbari, B., Math. Methods Appl. Sci. (2021), https://doi.org/10.1002/mma.7285.
[10] Wang, W. B.et al., Results Phys.18, 103243 (2020).
[11] Ghanbari, B. and Kumar, S., Numer. Methods Partial Differ. Equ. (2021), https://doi.org/10.1002/num.22689.
[12] Gao, W., Baskonus, H. M. and Shi, L., Adv. Differ. Equ.2020, 1 (2020). · Zbl 1485.92129
[13] Ghanbari, B. and Djilali, S., Math. Methods Appl. Sci.43, 1736 (2020). · Zbl 1452.92004
[14] Alharbi, A. and Almatrafi, M. B., Results Phys.16, 102870 (2020).
[15] Ghanbari, B., Adv. Differ. Equ.2020, 1 (2020). · Zbl 1487.92016
[16] Gao, W.et al., Numer. Methods Partial Differ. Equ.37, 210 (2021).
[17] Ghanbari, B. and Atangana, A., Adv. Differ. Equ.2020, 1 (2020). · Zbl 1487.92016
[18] McCue, S. W., El-Hachem, M. and Simpson, M. J., Appl. Math. Lett.114, 106918 (2021). · Zbl 1458.35108
[19] Djilali, S. and Ghanbari, B., Adv. Differ. Equ.2021, 1 (2021). · Zbl 1494.92096
[20] Gao, W.et al., Chaos Solitons Fractals138, 109929 (2020).
[21] Srivastava, M., Günerhan, H. and Ghanbari, B., Math. Methods Appl. Sci.42, 7210 (2019). · Zbl 1430.74070
[22] Erturk, V. S. and Kumar, P., Chaos Solitons Fractals139, 110280 (2020). · Zbl 1490.92080
[23] Ghanbari, B., Numer. Methods Partial Differ. Equ. (2021), https://doi.org/10.1002/num.22740.
[24] I. Herron, C. McCalla and R. Mickens, Appl. Math. Lett. (2020) Sep 1; 107, 106496 (2020). · Zbl 1441.35091
[25] Ghanbari, B., Numer. Methods Partial Differ. Equ. (2021), https://doi.org/10.1002/mma.7060.
[26] Munusamy, K.et al., Math. Methods Appl. Sci.43, 10319 (2020). · Zbl 1463.45035
[27] Ghanbari, B., Nisar, K. S. and Aldhaifallah, M., Adv. Differ. Equ.2020, 1 (2020). · Zbl 1485.35383
[28] Goyal, M., Baskonus, H. M. and Prakash, A., Chaos Solitons Fractals139, 110096 (2020).
[29] Ghanbari, B., Yusuf, A. and Baleanu, D., Adv. Differ. Equ.2019, 1 (2019). · Zbl 1458.35369
[30] Kudryashov, N. A., Optik219, 165193 (2020).
[31] Ghanbari, B., Rada, L. and Inc, M., J. Appl. Anal. Comput.9, 568 (2019). · Zbl 1461.35095
[32] Ghanbari, B. and Inc, M., Eur. Phys. J. Plus133, 1 (2018).
[33] Ghanbari, B. and Kuo, C. K., Phys. Scr.96, 045203 (2021).
[34] Kumar, S., Niwas, M. and Hamid, I., Int. J. Mod. Phys. B.35, 2150028 (2021). · Zbl 1455.35222
[35] Ghanbari, B. and Akgül, A., Phys. Scr.95, 075201 (2020).
[36] Ismael, H. F., Bulut, H. and Baskonus, H. M., Soft Comput.26, 1 (2020).
[37] Ghanbari, B.et al., Phys. Scr.95, 075208 (2020).
[38] Foroutan, M.et al., Optik170, 170 (2018).
[39] Kumar, D., Seadawy, A. R. and Haque, M. R., Chaos Solitons Fractals115, 62 (2018). · Zbl 1416.35073
[40] Gao, W.et al., Aims Math.5, 507 (2020).
[41] Panda, S. K., Abdeljawad, T. and Ravichandran, C., Chaos Solitons Fractals130, 109439 (2020). · Zbl 1489.34112
[42] Lu, D., Seadawy, A. R. and Khater, M. M., Mod. Phys. Lett. B33, 1950279 (2019).
[43] Rezazadeh, H.et al., Optik172, 545 (2018).
[44] Sulaiman, T. A., Bulut, H. and Baskonus, H. M., Discrete Contin. Dyn. Syst.-S763 (2019).
[45] Kumar, D., Singh, J. and Baleanu, D., Phys. A: Stat. Mech. Appl.492, 155 (2018).
[46] Cattani, C., Comput. Math. Methods Med.2021, 673934 (2012).
[47] Yang, X. J. and Gao, F., Therm. Sci.21, 133 (2017).
[48] Neirameh, A., Optik126, 4179 (2015).
[49] Neirameh, A. and Eslami, M., Trans. Mech. Eng. B24, 715 (2017).
[50] Eslami, M. and Neirameh, A., Opt. Quantum Electron.50, 47 (2018).
[51] Rezazadeh, H.et al., Pramana - J. Phys.94, 39 (2020), https://doi.org/10.1007/s12043-019-1881-5.
[52] Yang, X. J.et al., Therm. Sci.19, 959 (2015).
[53] Zafar, A. and Seadawy, A. R., J. King Saud Univ.-Sci.31, 1478 (2019).
[54] Zafar, A., Raheel, M. and Bekir, A., Optik204, 164133 (2020).
[55] Zafar, A.et al., Mod. Phys. Lett. B35, 2150132 (2021).
[56] Zafar, A.et al., Eur. Phys. J. Plus135, 726 (2020).
[57] Osman, M. S.et al., Optik222, 165418 (2020).
[58] Meryem, O., Zehra, P. and Hüseyin, K., Math. Methods Appl. Sci.44, 7526 (2021). · Zbl 1470.35407
[59] Zehra, P., Hadi, R. and Mostafa, E., Opt. Quantum Electron.52 (2020).
[60] Zehra, P., Int. J. Optim. Control: Theor. Appl.9, 52 (2019).
[61] Zehra, P. and Turgut, Ö., Nonlinear Anal.: Real World Appl.23, 9 (2015). · Zbl 1316.35071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.