×

Simplest equation method for some time-fractional partial differential equations with conformable derivative. (English) Zbl 1415.35275

Summary: The conformable fractional derivative was proposed by R. Khalil et al. [J. Comput. Appl. Math. 264, 65–70 (2014; Zbl 1297.26013)], which is natural and obeys the Leibniz rule and chain rule. Based on the properties, a class of time-fractional partial differential equations can be reduced into ODEs using traveling wave transformation. Then the simplest equation method is applied to find exact solutions of some time-fractional partial differential equations. The exact solutions (solitary wave solutions, periodic function solutions, rational function solutions) of time-fractional generalized Burgers equation, time-fractional generalized KdV equation, time-fractional generalized Sharma-Tasso-Olver (FSTO) equation and time-fractional fifth-order KdV equation, \((3+1)\)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation are constructed. This method presents a wide applicability to solve some nonlinear time-fractional differential equations with conformable derivative.

MSC:

35R11 Fractional partial differential equations
35C07 Traveling wave solutions

Citations:

Zbl 1297.26013
Full Text: DOI

References:

[1] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), Wiley: Wiley New York · Zbl 0789.26002
[2] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press California · Zbl 0918.34010
[3] Kilbas, A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[4] Gao, G.; Sun, Z.; Zhang, Y., A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions, J. Comput. Phys., 231, 772-779 (2012)
[5] Kadem, A.; Kilicman, A., Note on transport equation and fractional Sumudu transform, Comput. Math. Appl., 62, 2995-3003 (2011) · Zbl 1232.44002
[6] Gazizov, R. K.; Kasatkin, A. A.; Lukashchuk, S. Y., Symmetry properties of fractional diffusion equations, Phys. Scr., 2009, T136, 014016 (2009)
[7] Sahadevan, R.; Bakkyaraj, T., Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations, J. Math. Anal. Appl., 393, 341-347 (2012) · Zbl 1245.35142
[8] Chen, C.; Jiang, Y. L., Lie group analysis method for two classes of fractional partial differential equations, Commun. Nonlinear Sci., 26, 24-35 (2015) · Zbl 1440.35340
[9] Wang, G.; Liu, X.; Zhang, Y., Lie symmetry analysis to the time fractional generalized fifth-order KdV equation, Commun. Nonlinear Sci., 18, 2321-2326 (2013) · Zbl 1304.35624
[10] Odibat, Z.; Momani, S., A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 21, 194-199 (2008) · Zbl 1132.35302
[11] Jiang, Y. L.; Ding, X. L., Nonnegative solutions of fractional functional differential equations, Comput. Math. Appl., 63, 896-904 (2012) · Zbl 1247.34007
[12] Wu, G.; Lee, E. W.M., Fractional variational iteration method and its application, Phys. Lett. A, 374, 2506-2509 (2010) · Zbl 1237.34007
[13] Khalil, R.; Al Horani, M.; Yousef, A., A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65-70 (2014) · Zbl 1297.26013
[14] Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279, 57-66 (2015) · Zbl 1304.26004
[15] Abdeljawad, T.; AL Horani, M.; Khalil, R., Conformable fractional semigroups of operators, J. Semigroup Theory Appl., 2015 (2015), Article ID 7
[16] Katugampola, U. N., New approach to a generalized fractional integral, Appl. Math. Comput., 218, 860-865 (2011) · Zbl 1231.26008
[17] Hammad, M. A.; Khalil, R., Conformable fractional Heat differential equation, Int. J. Pure Appl. Math., 94, 215-221 (2014)
[18] Chung, W. S., Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 290, 150-158 (2015) · Zbl 1336.70033
[19] Eslami, M., Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations, Appl. Math. Comput., 285, 141-148 (2016) · Zbl 1410.35273
[20] Kurt, A.; Çenesiz, Y.; Tasbozan, O., On the solution of burgers equation with the new fractional derivative, Open Phys., 13, 355-360 (2015)
[21] Iyiola, O. S.; Ojo, G. O., On the analytical solution of Fornberg-Whitham equation with the new fractional derivative, Pramana, 85, 567-575 (2015)
[22] Kudryashov, N. A., Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Solitons Fractals, 24, 1217-1231 (2005) · Zbl 1069.35018
[23] Kudryashov, N. A., Exact solitary waves of the Fisher equation, Phys. Lett. A, 342, 99-106 (2005) · Zbl 1222.35054
[24] Lu, B., The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395, 684-693 (2012) · Zbl 1246.35202
[25] Liu, H., Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations, Stud. Appl. Math., 131, 317-330 (2013) · Zbl 1277.35305
[26] Sahoo, S.; Ray, S. S., Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations, Comput. Math. Appl., 70, 158-166 (2015) · Zbl 1443.35173
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.