×

Localized mixing zone for Muskat bubbles and turned interfaces. (English) Zbl 1492.35218

The authors consider two incompressible fluids with constant densities \(\rho _{-}\), \(\rho _{+}\) and equal viscosity \(\mu \), separated by a connected curve \(z^{o}=(z_{1}^{o},z_{2}^{o})\) inside a 2D porous medium with constant permeability \(\kappa \), and submitted to gravity \(-g(0,1)\). They write the incompressible porous media system as \(\partial _{t}\rho =\nabla \cdot (\rho v)\), \(\nabla \cdot v=0\), \(\frac{\mu }{\kappa }v=-\nabla p-\rho g(0,1)\), where \(v(t,x)\) is the velocity field and \(p(t,x)\) the pressure. The paper focuses on two unstable solutions to this Muskat problem where the two fluids occupy initial domains \(\Omega _{\pm }^{o}\), which are separated either by a closed chord-arc curve, in the case of so-called bubble interfaces, or by an open chord-arc curve which cannot be parametrized as a graph, in the case of turned interfaces. In the bubble interface case, the authors prove that for every closed chord-arc curve \(z^{o}\in H^{6}(\mathbb{T };\mathbb{R}^{2})\) there exist infinitely many mixing solutions to the Muskat problem starting from \(\rho ^{o}(x)=\rho _{\pm }=\pm 1\), \(x\in \Omega _{\pm }^{o}\). In the turned interface case, the authors prove that for every open chord-arc curve, either \(x_{1}\)-periodic \(z^{o}-(\alpha ,0)\in H^{6}( \mathbb{T};\mathbb{R}^{2})\) or asymptotically flat \(z^{o}-(\alpha ,0)\in H^{6}(\mathbb{R};\mathbb{R}^{2})\), whose turned region \(\{\partial _{\alpha }z_{1}^{o}(\alpha )\leq 0\}\) has positive measure, there exist infinitely many mixing solutions to the Muskat problem starting from \(\rho ^{o}(x)=\rho _{\pm }=\pm 1\), \(x\in \Omega _{\pm }^{o}\). For the proof of these results, the authors use the convex integration method to hydrodynamics proposed by C.De Lellis and L.Székelyhidi in [Ann. Math. (2) 170, No. 3, 1417–1436 (2009; Zbl 1350.35146); Arch. Ration. Mech. Anal. 195, No. 1, 225–260 (2010; Zbl 1192.35138)]. They start recalling the notion of weak solution as a pair \((\rho ,v)\in C([0,T];L_{w^{\ast }}^{\infty }(\mathbb{R} ^{2};[-1,1]\times \mathbb{R}^{2}))\) which satisfies a variational formulation of the above problem, that of mixing solution if \(\mathbb{R}^{2}\) can be split into three complementary open domains, \(\Omega _{\pm }(t)\) and \( \Omega _{mix}(t)\), such that \((\rho ,v)\) is continuous on the non-mixing zones \(\Omega _{\pm }\) with \(\rho =\pm 1\) on \(\Omega _{\pm }\), while it behaves wildly inside the mixing zone \(\Omega _{mix}\), and that of subsolution as \((\overline{\rho },\overline{v},\overline{m})\in C([0,T];L_{w^{\ast }}^{\infty }(\mathbb{R}^{2};[-1,1]\times \mathbb{R} ^{2}\times \mathbb{R}^{2}))\) which satisfies a variational formulation of the above problem and such that \(\mathbb{R}^{2}\) can be split into the three complementary open domains with further conditions on the functions. The authors prove a h-principle which means that if there exists a subsolution \(( \overline{\rho },\overline{v},\overline{m})\) to the above problem starting from \(\rho ^{o}\), for some \(T>0\), in \(\Omega _{\pm }\) and \(\Omega _{mix}\), then there exist infinitely many mixing solutions \((\rho ,v)\) to this problem starting from \(\rho ^{o}\), for the same \(T>0\), in \(\Omega _{\pm }\) and \(\Omega _{mix}\), and satisfying \((\rho ,v)=(\overline{\rho },\overline{v} )\) outside \(\Omega _{mix}\). They build a density \(\overline{\rho }\), a velocity \(\overline{v}\) using the Biot-Savart law, and a relaxed momentum \( \overline{m}\), from which they derive a subsolution through appropriate choices of \(c,z\).

MSC:

35Q35 PDEs in connection with fluid mechanics
76S05 Flows in porous media; filtration; seepage
35B65 Smoothness and regularity of solutions to PDEs
35D30 Weak solutions to PDEs

References:

[1] Akramov, I.; Wiedemann, E., NonUnique admissible weak solutions of the compressible Euler equations with compact support in space, SIAM J. Math. Anal., 53, 1, 795-812 (2021) · Zbl 1480.35314
[2] Alazard, T.; Lazar, O., Paralinearization of the Muskat equation and application to the Cauchy problem, Arch. Ration. Mech. Anal., 237, 2, 545-583 (2020) · Zbl 1437.35563
[3] Alazard, T., Nguyen, Q.-H.: Endpoint Sobolev theory for the Muskat equation. arXiv:2010.06915 (2020)
[4] Alazard, T.; Nguyen, Q-H, On the Cauchy problem for the Muskat equation II: Critical initial data, Ann. PDE, 7, 1, 25 (2021) · Zbl 1473.35430
[5] Alazard, T.; Nguyen, Q-H, On the Cauchy problem for the Muskat equation with non-Lipschitz initial data, Commun. Partial Differ. Equ., 46, 11, 2171-2212 (2021) · Zbl 1477.35151
[6] Ambrose, DM, Well-posedness of two-phase Hele-Shaw flow without surface tension, Eur. J. Appl. Math., 15, 5, 597-607 (2004) · Zbl 1076.76027
[7] Arnaiz, V.; Castro, A.; Faraco, D., Semiclassical estimates for pseudodifferential operators and the Muskat problem in the unstable regime, Commun. Partial Differ. Equ., 46, 1, 135-164 (2021) · Zbl 1462.35278
[8] Beekie, R.; Buckmaster, T.; Vicol, V., Weak solutions of ideal MHD which do not conserve magnetic helicity, Ann. PDE, 6, 1, 40 (2020) · Zbl 1462.35282
[9] Buckmaster, T.; Colombo, M.; Vicol, V., Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1, J. Eur. Math. Soc. (2021) · Zbl 1493.35063 · doi:10.4171/JEMS/1162
[10] Buckmaster, T.; De Lellis, C.; Székelyhidi, L. Jr; Vicol, V., Onsager’s conjecture for admissible weak solutions, Commun. Pure Appl. Math., 72, 2, 229-274 (2019) · Zbl 1480.35317
[11] Buckmaster, T.; Shkoller, S.; Vicol, V., Nonuniqueness of weak solutions to the SQG equation, Commun. Pure Appl. Math., 72, 9, 1809-1874 (2019) · Zbl 1427.35200
[12] Buckmaster, T.; Vicol, V., Convex integration and phenomenologies in turbulence, EMS Surv. Math. Sci., 6, 1-2, 173-263 (2019) · Zbl 1440.35231
[13] Buckmaster, T.; Vicol, V., Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. Math. (2), 189, 1, 101-144 (2019) · Zbl 1412.35215
[14] Burczak, J.; Modena, S.; Székelyhidi, L., Non uniqueness of power-law flows, Commun. Math. Phys., 388, 1, 199-243 (2021) · Zbl 1477.35158
[15] Cameron, S., Global well-posedness for the two-dimensional Muskat problem with slope less than 1, Anal. PDE, 12, 4, 997-1022 (2019) · Zbl 1403.35127
[16] Castro, A.; Córdoba, D.; Faraco, D., Mixing solutions for the Muskat problem, Invent. Math., 226, 1, 251-348 (2021) · Zbl 1491.35331
[17] Castro, A.; Córdoba, D.; Fefferman, C.; Gancedo, F., Breakdown of smoothness for the Muskat problem, Arch. Ration. Mech. Anal., 208, 3, 805-909 (2013) · Zbl 1293.35234
[18] Castro, A.; Córdoba, D.; Fefferman, C.; Gancedo, F.; López-Fernández, M., Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves, Ann. Math. (2), 175, 2, 909-948 (2012) · Zbl 1267.76033
[19] Castro, A.; Faraco, D.; Mengual, F., Degraded mixing solutions for the Muskat problem, Calc. Var. Partial Differ. Equ., 58, 2, 29 (2019) · Zbl 1412.35246
[20] Cheng, CHA; Granero-Belinchón, R.; Shkoller, S., Well-posedness of the Muskat problem with \(H^2\) initial data, Adv. Math., 286, 32-104 (2016) · Zbl 1331.35396
[21] Chiodaroli, E.; De Lellis, C.; Kreml, O., Global ill-posedness of the isentropic system of gas dynamics, Commun. Pure Appl. Math., 68, 7, 1157-1190 (2015) · Zbl 1323.35137
[22] Chiodaroli, E.; Kreml, O., On the energy dissipation rate of solutions to the compressible isentropic Euler system, Arch. Ration. Mech. Anal., 214, 3, 1019-1049 (2014) · Zbl 1304.35516
[23] Colombo, M.; De Lellis, C.; De Rosa, L., Ill-posedness of Leray solutions for the hypodissipative Navier-Stokes equations, Commun. Math. Phys., 362, 2, 659-688 (2018) · Zbl 1402.35204
[24] Constantin, P.; Córdoba, D.; Gancedo, F.; Rodríguez-Piazza, L.; Strain, RM, On the Muskat problem: global in time results in 2D and 3D, Am. J. Math., 138, 6, 1455-1494 (2016) · Zbl 1369.35053
[25] Constantin, P.; Córdoba, D.; Gancedo, F.; Strain, RM, On the global existence for the Muskat problem, J. Eur. Math. Soc. (JEMS), 15, 1, 201-227 (2013) · Zbl 1258.35002
[26] Constantin, P.; Gancedo, F.; Shvydkoy, R.; Vicol, V., Global regularity for 2D Muskat equations with finite slope, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34, 4, 1041-1074 (2017) · Zbl 1365.76304
[27] Córdoba, A.; Córdoba, D., A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci. USA, 100, 26, 15316-15317 (2003) · Zbl 1111.26010
[28] Córdoba, A.; Córdoba, D.; Gancedo, F., Interface evolution: the Hele-Shaw and Muskat problems, Ann. Math. (2), 173, 1, 477-542 (2011) · Zbl 1229.35204
[29] Córdoba, A.; Córdoba, D.; Gancedo, F., Uniqueness for SQG patch solutions, Trans. Am. Math. Soc. Ser. B, 5, 1-31 (2018) · Zbl 1390.35244
[30] Córdoba, D.; Faraco, D.; Gancedo, F., Lack of uniqueness for weak solutions of the incompressible porous media equation, Arch. Ration. Mech. Anal., 200, 3, 725-746 (2011) · Zbl 1241.35156
[31] Córdoba, D.; Gancedo, F., Contour dynamics of incompressible 3-D fluids in a porous medium with different densities, Commun. Math. Phys., 273, 2, 445-471 (2007) · Zbl 1120.76064
[32] Córdoba, D., Lazar, O.: Global well-posedness for the 2D stable Muskat problem in \({H}^{3/2}\). Ann. Sci. Éc. Norm. Supér. arXiv:1803.07528 (2021) · Zbl 1508.35065
[33] Crippa, G., Gusev, N., Spirito, S., Wiedemann, E.: Non-uniqueness and prescribed energy for the continuity equation. Commun. Math. Sci. 13(7), 1937-1947 (2015) · Zbl 1332.35008
[34] Daneri, S.; Runa, E.; Székelyhidi, L., Non-uniqueness for the Euler equations up to Onsager’s critical exponent, Ann. PDE, 7, 1, 44 (2021) · Zbl 1478.35171
[35] De Lellis, C.; Székelyhidi, L. Jr, The Euler equations as a differential inclusion, Ann. Math. (2), 170, 3, 1417-1436 (2009) · Zbl 1350.35146
[36] De Lellis, C.; Székelyhidi, L. Jr, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195, 1, 225-260 (2010) · Zbl 1192.35138
[37] De Lellis, C.; Székelyhidi, L. Jr, The \(h\)-principle and the equations of fluid dynamics, Bull. Am. Math. Soc. (N.S.), 49, 3, 347-375 (2012) · Zbl 1254.35180
[38] De Lellis, C.; Székelyhidi, L. Jr, High dimensionality and h-principle in PDE, Bull. Am. Math. Soc. (N.S.), 54, 2, 247-282 (2017) · Zbl 1366.35120
[39] Deng, F.; Lei, Z.; Lin, F., On the two-dimensional Muskat problem with monotone large initial data, Commun. Pure Appl. Math., 70, 6, 1115-1145 (2017) · Zbl 1457.76053
[40] Faraco, D.; Lindberg, S., Proof of Taylor’s conjecture on magnetic helicity conservation, Commun. Math. Phys., 373, 2, 707-738 (2020) · Zbl 1433.35269
[41] Faraco, D.; Lindberg, S.; Székelyhidi, L., Bounded solutions of ideal MHD with compact support in space-time, Arch. Ration. Mech. Anal., 239, 1, 51-93 (2021) · Zbl 1462.76208
[42] Feireisl, E.; Klingenberg, C.; Markfelder, S., On the density of “wild” initial data for the compressible Euler system, Calc. Var. Partial Differ. Equ., 59, 5, 17 (2020) · Zbl 1448.76126
[43] Förster, C.; Székelyhidi, L. Jr, Piecewise constant subsolutions for the Muskat problem, Commun. Math. Phys., 363, 3, 1051-1080 (2018) · Zbl 1446.76159
[44] Gancedo, F., García-Juárez, E., Patel, N., Strain, R.: Global regularity for gravity unstable Muskat bubbles. Mem. Am. Math. Soc. 10.48550/ arXiv:1902.02318 (2021)
[45] Gebhard, B., Kolumbán, J.J.: Relaxation of the Boussinesq system and applications to the Rayleigh-Taylor instability. arXiv:2008.08853 (2020) · Zbl 1497.35368
[46] Gebhard, B.; Kolumbán, JJ; Székelyhidi, L., A new approach to the Rayleigh-Taylor instability, Arch. Ration. Mech. Anal., 241, 3, 1243-1280 (2021) · Zbl 1479.35643
[47] Hitruhin, L.; Lindberg, S., Lamination convex hull of stationary incompressible porous media equations, SIAM J. Math. Anal., 53, 1, 491-508 (2021) · Zbl 1458.35333
[48] Homsy, GM, Viscous fingering in porous media, Ann. Rev. Fluid Mech., 19, 1, 271-311 (1987)
[49] Isett, P., A proof of Onsager’s conjecture, Ann. Math. (2), 188, 3, 871-963 (2018) · Zbl 1416.35194
[50] Isett, P.; Vicol, V., Hölder continuous solutions of active scalar equations, Ann. PDE, 1, 1, 77 (2015) · Zbl 1395.35061
[51] Jacobs, M.; Kim, I.; Mészáros, AR, Weak solutions to the Muskat problem with surface tension via optimal transport, Arch. Ration. Mech. Anal., 239, 1, 389-430 (2021) · Zbl 1460.65114
[52] Knott, G.: Oscillatory solutions to hyperbolic conservation laws and active scalar equations. PhD thesis, Universtät Leipzig (2013)
[53] Manickam, O.; Homsy, GM, Fingering instabilities in vertical miscible displacement flows in porous media, J. Fluid. Mech., 288, 75-102 (1995) · Zbl 0853.76024
[54] Markfelder, S.: Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations. PhD thesis, Julius-Maximilians-Universität Würzburg (2021) · Zbl 07393619
[55] Markfelder, S.; Klingenberg, C., The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock, Arch. Ration. Mech. Anal., 227, 3, 967-994 (2018) · Zbl 1390.35249
[56] Matioc, B-V, The Muskat problem in two dimensions: equivalence of formulations, well-posedness, and regularity results, Anal. PDE, 12, 2, 281-332 (2019) · Zbl 1402.35319
[57] Mengual, F.: H-principle for the 2D incompressible porous media equation with viscosity jump. Anal. PDE, (2020). To appear
[58] Mengual, F., Székelyhidi, L.: Jr. Dissipative Euler flows for vortex sheet initial data without distinguished sign. Commun. Pure Appl. Math. (2021). To appear
[59] Modena, S.; Sattig, G., Convex integration solutions to the transport equation with full dimensional concentration, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37, 5, 1075-1108 (2020) · Zbl 1458.35363
[60] Modena, S.; Székelyhidi, L., Non-uniqueness for the transport equation with Sobolev vector fields, Ann. PDE, 4, 2, 38 (2018) · Zbl 1411.35066
[61] Modena, S.; Székelyhidi, L., Non-renormalized solutions to the continuity equation, Calc. Var. Partial Differ. Equ., 58, 6, 30 (2019) · Zbl 1428.35005
[62] Muskat, M., Two fluid systems in porous media. The encroachment of water into an oil sand, Physics, 5, 250-264 (1934) · JFM 60.1388.01
[63] Nguyen, HQ; Pausader, B., A paradifferential approach for well-posedness of the Muskat problem, Arch. Ration. Mech. Anal., 237, 1, 35-100 (2020) · Zbl 1437.35588
[64] Noisette, F.; Székelyhidi, L., Mixing solutions for the Muskat problem with variable speed, J. Evol. Equ., 21, 3289-3312 (2020) · Zbl 1502.35123
[65] Otto, F., Evolution of microstructure in unstable porous media flow: a relaxational approach, Commun. Pure Appl. Math., 52, 7, 873-915 (1999) · Zbl 0929.76136
[66] Otto, F., Evolution of microstructure: an example, Ergodic Theory Analysis, and Efficient Simulation of Dynamical Systems, 501-522 (2001), Berlin: Springer, Berlin · Zbl 1136.76349
[67] Saffman, PG; Taylor, G., The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. R. Soc. Lond. Ser. A, 245, 312-329, (2 plates) (1958) · Zbl 0086.41603
[68] Shvydkoy, R., Convex integration for a class of active scalar equations, J. Am. Math. Soc., 24, 4, 1159-1174 (2011) · Zbl 1231.35177
[69] Siegel, M.; Caflisch, RE; Howison, S., Global existence, singular solutions, and ill-posedness for the Muskat problem, Commun. Pure Appl. Math., 57, 10, 1374-1411 (2004) · Zbl 1062.35089
[70] Székelyhidi, L. Jr, Weak solutions to the incompressible Euler equations with vortex sheet initial data, C. R. Math. Acad. Sci. Paris, 349, 19-20, 1063-1066 (2011) · Zbl 1230.35093
[71] Székelyhidi, L. Jr, Relaxation of the incompressible porous media equation, Ann. Sci. Éc. Norm. Supér. (4), 45, 3, 491-509 (2012) · Zbl 1256.35073
[72] Tryggvason, G.; Aref, H., Numerical experiments on Hele-Shaw flow with sharp interface, J. Fluid Mech., 136, 1-30 (1983) · Zbl 0525.76042
[73] Wooding, RA; Morel-Seytoux, HJ, Multiphase fluid flow through porous media, Ann. Rev. Fluid Mech., 8, 1, 233-274 (1976) · Zbl 0399.76084
[74] Yi, F., Global classical solution of Muskat free boundary problem, J. Math. Anal. Appl., 288, 2, 442-461 (2003) · Zbl 1038.35083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.