×

Topology of cosmological black holes. (English) Zbl 1491.83034


MSC:

83C57 Black holes
83E05 Geometrodynamics and the holographic principle
58J47 Propagation of singularities; initial value problems on manifolds
14J80 Topology of surfaces (Donaldson polynomials, Seiberg-Witten invariants)
83F05 Relativistic cosmology
74E05 Inhomogeneity in solid mechanics
53E10 Flows related to mean curvature
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
83C25 Approximation procedures, weak fields in general relativity and gravitational theory

References:

[1] R.M. Wald, 1983 Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant, https://doi.org/10.1103/PhysRevD.28.2118 Phys. Rev. D 28 2118 · Zbl 0959.83064 · doi:10.1103/PhysRevD.28.2118
[2] J.D. Barrow and F.J. Tipler, 1985 Closed universes: their future evolution and final state, https://doi.org/10.1093/mnras/216.2.395 Mon. Not. Roy. Astron. Soc.216 395 · doi:10.1093/mnras/216.2.395
[3] M. Kleban and L. Senatore, 2016 Inhomogeneous anisotropic cosmology J. Cosmol. Astropart. Phys.2016 10 022 [1602.03520]
[4] R. Penrose, 1965 Gravitational collapse and space-time singularities, https://doi.org/10.1103/PhysRevLett.14.57 Phys. Rev. Lett.14 57 · Zbl 0125.21206 · doi:10.1103/PhysRevLett.14.57
[5] R.M. Wald, 1984 General relativity, https://doi.org/10.7208/chicago/9780226870373.001.0001University of Chicago Press, Chicago, IL, U.S.A. · Zbl 0549.53001 · doi:10.7208/chicago/9780226870373.001.0001
[6] A.A. Starobinsky, 1983 Isotropization of arbitrary cosmological expansion given an effective cosmological constant JETP; Lett.37 66
[7] G.W. Gibbons and S.W. Hawking, 1977 Cosmological event horizons, thermodynamics and particle creation, https://doi.org/10.1103/PhysRevD.15.2738 Phys. Rev. D 15 2738 · doi:10.1103/PhysRevD.15.2738
[8] W. Boucher and G.W. Gibbons, Cosmic baldness, in Nuffield workshop on the very early universe, Cambridge, U.K., 21 June-9 July 1982, pg. 273 [1109.3535]
[9] H. Friedrich, 1986 Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant, https://doi.org/10.1016/0393-0440(86)90004-5 J. Geom. Phys.3 101 · Zbl 0592.53061 · doi:10.1016/0393-0440(86)90004-5
[10] J. Kahn and V. Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, [0910.5501] · Zbl 1254.57014
[11] R. Schoen and S.-T. Yau, 1978 Incompressible minimal surfaces, three-dimensional manifolds with nonnegative scalar curvature, and the positive mass conjecture in general relativity, https://doi.org/10.1073/pnas.75.6.2567 Proc. Nat. Acad. Sci.75 2567 · Zbl 0385.53052 · doi:10.1073/pnas.75.6.2567
[12] D.M. Eardley and L. Smarr, 1979 Time function in numerical relativity. Marginally bound dust collapse, https://doi.org/10.1103/PhysRevD.19.2239 Phys. Rev. D 19 2239 · doi:10.1103/PhysRevD.19.2239
[13] P. Creminelli, L. Senatore and A. Vasy, 2020 Asymptotic behavior of cosmologies with Λ > 0 in 2+1 dimensions, https://doi.org/10.1007/s00220-020-03706-3 Commun. Math. Phys. [1902.00519] · Zbl 1441.83024 · doi:10.1007/s00220-020-03706-3
[14] S.W. Hawking, 1972 Black holes in general relativity, https://doi.org/10.1007/BF01877517 Commun. Math. Phys.25 152 · doi:10.1007/BF01877517
[15] G.J. Galloway and R. Schoen, 2006 A generalization of Hawking’s black hole topology theorem to higher dimensions, https://doi.org/10.1007/s00220-006-0019-z Commun. Math. Phys.266 571 [gr-qc/0509107] · Zbl 1190.53070 · doi:10.1007/s00220-006-0019-z
[16] G.J. Galloway, 2018 Rigidity of outermost MOTS — the initial data version, https://doi.org/10.1007/s10714-018-2353-9 Gen. Rel. Grav.50 32 [1712.02247] · Zbl 1392.83005 · doi:10.1007/s10714-018-2353-9
[17] W.E. East, M. Kleban, A. Linde and L. Senatore, 2016 Beginning inflation in an inhomogeneous universe J. Cosmol. Astropart. Phys.2016 09 010 [1511.05143]
[18] K. Clough, E.A. Lim, B.S. DiNunno, W. Fischler, R. Flauger and S. Paban, 2017 Robustness of inflation to inhomogeneous initial conditions J. Cosmol. Astropart. Phys.2017 09 025 [1608.04408] · Zbl 1515.83325
[19] K. Clough, R. Flauger and E.A. Lim, 2018 Robustness of inflation to large tensor perturbations J. Cosmol. Astropart. Phys.2018 05 065 [1712.07352]
[20] A.N. Bernal and M. Sanchez, 2007 Globally hyperbolic spacetimes can be defined as “causal” instead of “strongly causal”, https://doi.org/10.1088/0264-9381/24/3/N01 Class. Quant. Grav.24 745 [gr-qc/0611138] · Zbl 1177.53065 · doi:10.1088/0264-9381/24/3/N01
[21] R.P. Geroch, 1970 The domain of dependence, https://doi.org/10.1063/1.1665157 J. Math. Phys.11437 · Zbl 0189.27602 · doi:10.1063/1.1665157
[22] A.N. Bernal and M. Sanchez, 2005 Smoothness of time functions and the metric splitting of globally hyperbolic space-times, https://doi.org/10.1007/s00220-005-1346-1 Commun. Math. Phys.257 43 [gr-qc/0401112] · Zbl 1081.53059 · doi:10.1007/s00220-005-1346-1
[23] K. Ecker and G. Huisken, 1991 Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes, https://doi.org/10.1007/bf02104123 Commun. Math. Phys.135 595 · Zbl 0721.53055 · doi:10.1007/bf02104123
[24] C. Gerhardt, 1983 H-surfaces in Lorentzian manifolds, https://doi.org/10.1007/BF01214742 Commun. Math. Phys.89 523 · Zbl 0519.53056 · doi:10.1007/BF01214742
[25] R. Bartnik, 1984 Existence of maximal surfaces in asymptotically flat spacetimes, https://doi.org/10.1007/bf01209300 Commun. Math. Phys.94 155 · Zbl 0548.53054 · doi:10.1007/bf01209300
[26] G.J. Galloway and E. Ling, 2018 Topology and singularities in cosmological spacetimes obeying the null energy condition, https://doi.org/10.1007/s00220-017-3020-9 Commun. Math. Phys.360 611 [1705.06705] · Zbl 1450.83004 · doi:10.1007/s00220-017-3020-9
[27] A. Hatcher, The classification of 3-manifolds — a brief overview, https://www.math.cornell.edu/ hatcher/Papers/3Msurvey.pdfhttps://www.math.cornell.edu/∼hatcher/Papers/3Msurvey.pdf
[28] M. Aschenbrenner, S. Friedl and H. Wilton, 3-manifold groups, [1205.0202]
[29] A. Vilenkin and A.C. Wall, 2014 Cosmological singularity theorems and black holes, https://doi.org/10.1103/PhysRevD.89.064035 Phys. Rev. D 89 064035 [1312.3956] · doi:10.1103/PhysRevD.89.064035
[30] P.T. Chruściel, G.J. Galloway and E. Ling, 2018 Weakly trapped surfaces in asymptotically de Sitter spacetimes, https://doi.org/10.1088/1361-6382/aac30d Class. Quant. Grav.35 135001 [1803.02339] · Zbl 1409.83037 · doi:10.1088/1361-6382/aac30d
[31] P.T. Chrusciel, E. Delay, G.J. Galloway and R. Howard, 2001 The area theorem, https://doi.org/10.1007/PL00001029 Annales Henri Poincaré2 109 [gr-qc/0001003] · Zbl 0977.83047 · doi:10.1007/PL00001029
[32] R. Schon and S.-T. Yau, 1979 On the proof of the positive mass conjecture in general relativity, https://doi.org/10.1007/BF01940959 Commun. Math. Phys.65 45 · Zbl 0405.53045 · doi:10.1007/BF01940959
[33] S. Ryu and T. Takayanagi, 2006 Aspects of holographic entanglement entropy J. High Energy Phys. JHEP08(2006)045 [hep-th/0605073]
[34] A. Linde, On the problem of initial conditions for inflation, in Black holes, gravitational waves and spacetime singularities, Rome, Italy, 9-12 May 2017 [1710.04278]
[35] A. Linde, 2018 Found. Phys.48 1246 · Zbl 1411.83158 · doi:10.1007/s10701-018-0177-9
[36] R. Brandenberger, 2016 Initial conditions for inflation — a short review, https://doi.org/10.1142/S0218271817400028 Int. J. Mod. Phys. D 26 1740002 [1601.01918] · doi:10.1142/S0218271817400028
[37] T. Vachaspati and M. Trodden, 1999 Causality and cosmic inflation, https://doi.org/10.1103/PhysRevD.61.023502 Phys. Rev. D 61 023502 [gr-qc/9811037] · doi:10.1103/PhysRevD.61.023502
[38] P.R. Brady, I.G. Moss and R.C. Myers, 1998 Cosmic censorship: as strong as ever, https://doi.org/10.1103/PhysRevLett.80.3432 Phys. Rev. Lett.80 3432 [gr-qc/9801032] · Zbl 0949.83051 · doi:10.1103/PhysRevLett.80.3432
[39] M. Dafermos and J. Luk, The interior of dynamical vacuum black holes I: the C^0-stability of the Kerr Cauchy horizon, [1710.01722]
[40] V. Cardoso, J.L. Costa, K. Destounis, P. Hintz and A. Jansen, 2018 Quasinormal modes and strong cosmic censorship, https://doi.org/10.1103/PhysRevLett.120.031103 Phys. Rev. Lett.120 031103 [1711.10502] · doi:10.1103/PhysRevLett.120.031103
[41] M. Dafermos and Y. Shlapentokh-Rothman, 2018 Rough initial data and the strength of the blue-shift instability on cosmological black holes with Λ > 0, https://doi.org/10.1088/1361-6382/aadbcf Class. Quant. Grav.35 195010 [1805.08764] · Zbl 1409.83009 · doi:10.1088/1361-6382/aadbcf
[42] O.J.C. Dias, H.S. Reall and J.E. Santos, 2018 Strong cosmic censorship: taking the rough with the smooth J. High Energy Phys. JHEP10(2018)001 [1808.02895] · Zbl 1402.83055 · doi:10.1007/JHEP10(2018)001
[43] A. Kaya, 2016 Remarks on inhomogeneous anisotropic cosmology, https://doi.org/10.1103/PhysRevD.94.043509 Phys. Rev. D 94 043509 [1603.03443] · doi:10.1103/PhysRevD.94.043509
[44] M.C.D. Marsh, J.D. Barrow and C. Ganguly, 2018 Inhomogeneous initial data and small-field inflation J. Cosmol. Astropart. Phys.2018 05 026 [1803.00625] · Zbl 1536.83190
[45] A. Albrecht, R.H. Brandenberger and R. Matzner, 1985 Numerical analysis of inflation, https://doi.org/10.1103/PhysRevD.32.1280 Phys. Rev. D 32 1280 · doi:10.1103/PhysRevD.32.1280
[46] R.H. Brandenberger and J.H. Kung, 1990 Chaotic inflation as an attractor in initial condition space, https://doi.org/10.1103/PhysRevD.42.1008 Phys. Rev. D 42 1008 · doi:10.1103/PhysRevD.42.1008
[47] A. Maleknejad and M.M. Sheikh-Jabbari, 2012 Revisiting cosmic no-hair theorem for inflationary settings, https://doi.org/10.1103/PhysRevD.85.123508 Phys. Rev. D 85 123508 [1203.0219] · doi:10.1103/PhysRevD.85.123508
[48] L. Bordin, P. Creminelli, M. Mirbabayi and J. Noreña, 2016 Tensor squeezed limits and the Higuchi bound J. Cosmol. Astropart. Phys.2016 09 041 [1605.08424]
[49] F. Piazza, D. Pirtskhalava, R. Rattazzi and O. Simon, 2017 Gaugid inflation J. Cosmol. Astropart. Phys.2017 11 041 [1706.03402] · Zbl 1515.83431
[50] J. Braden, M.C. Johnson, H.V. Peiris and A. Aguirre, 2017 Constraining cosmological ultralarge scale structure using numerical relativity, https://doi.org/10.1103/PhysRevD.96.023541 Phys. Rev. D 96 023541 [1604.04001] · doi:10.1103/PhysRevD.96.023541
[51] N. Kaloper and J. Scargill, 2019 Quantum cosmic no-hair theorem and inflation, https://doi.org/10.1103/PhysRevD.99.103514 Phys. Rev. D 99 103514 [1802.09554] · doi:10.1103/PhysRevD.99.103514
[52] A.A. Starobinsky and J. Yokoyama, 1994 Equilibrium state of a selfinteracting scalar field in the de Sitter background, https://doi.org/10.1103/PhysRevD.50.6357 Phys. Rev. D 50 6357 [astro-ph/9407016] · doi:10.1103/PhysRevD.50.6357
[53] D. López Nacir, F.D. Mazzitelli and L.G. Trombetta, 2018 Long distance behavior of O(N)-model correlators in de Sitter space and the resummation of secular terms J. High Energy Phys. JHEP10(2018)016 [1807.05964] · Zbl 1402.85009 · doi:10.1007/JHEP10(2018)016
[54] V. Gorbenko and L. Senatore, λ\phi^4 in de Sitter, talk given at IAS cosmology meeting, 25 September 2018
[55] D. Anninos, 2012 De Sitter musings, https://doi.org/10.1142/S0217751X1230013X Int. J. Mod. Phys. A 27 1230013 [1205.3855] · Zbl 1247.83068 · doi:10.1142/S0217751X1230013X
[56] R. Bousso and N. Engelhardt, 2016 Generalized second law for cosmology, https://doi.org/10.1103/PhysRevD.93.024025 Phys. Rev. D 93 024025 [1510.02099] · doi:10.1103/PhysRevD.93.024025
[57] S.M. Carroll and A. Chatwin-Davies, 2018 Cosmic equilibration: a holographic no-hair theorem from the generalized second law, https://doi.org/10.1103/PhysRevD.97.046012 Phys. Rev. D 97 046012 [1703.09241] · doi:10.1103/PhysRevD.97.046012
[58] X. Dong, E. Silverstein and G. Torroba, 2018 De Sitter holography and entanglement entropy J. High Energy Phys. JHEP07(2018)050 [1804.08623] · Zbl 1395.81213 · doi:10.1007/JHEP07(2018)050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.