×

Rough initial data and the strength of the blue-shift instability on cosmological black holes with \(\Lambda >0\). (English) Zbl 1409.83009

Summary: We consider the wave equation on Reissner-Nordström-de Sitter and more generally Kerr-Newman-de Sitter black hole spacetimes with \(\Lambda >0\). The strength of the blue-shift instability associated to the Cauchy horizon of these spacetimes has been the subject of much discussion, since – in contrast to the asymptotically flat \(\Lambda =0\) case – the competition with the decay associated to the region between the event and cosmological horizons is delicate, especially as the extremal limit is approached. Of particular interest is the question as to whether generic, admissible initial data posed on a Cauchy surface lead to solutions whose local (integrated) energy blows up at the Cauchy horizon, for this statement holds in the asymptotically flat case and would correspond precisely to the blow up required by Christodoulou’s formulation of strong cosmic censorship. Some recent heuristic work suggests that the answer is in general negative for solutions arising from sufficiently smooth data, i.e. there exists a certain range of black hole parameters such that for all such data, the arising solutions have finite local (integrated) energy at the Cauchy horizon. In this short note, we shall show in contrast that, by slightly relaxing the smoothness assumption on initial data, we are able to prove the analogue of the Christodoulou statement in the affirmative, i.e. we show that for generic data in our allowed class, the local energy blow-up statement indeed holds at the Cauchy horizon, for all subextremal black hole parameter ranges. We present two distinct proofs. The first is based on an explicit mode construction while the other is softer and uses only time translation invariance of appropriate scattering maps, in analogy with our previous [M. Dafermos and Y. Shlapentokh-Rothman, Commun. Math. Phys. 350, No. 3, 985–1016 (2017; Zbl 1360.83030)]. Both proofs use statements concerning the non-triviality of transmission and reflexion, which are easy to infer by o.d.e. techniques and analyticity considerations. Our slightly enlarged class of initial data is still sufficiently regular to ensure both stability and decay properties in the region between the event and cosmological horizons as well as the boundedness and continuous extendibility beyond the Cauchy horizon. This suggests thus that it is finally this class – and not smoother data – which may provide the correct setting to formulate the genericity condition in strong cosmic censorship.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
83F05 Relativistic cosmology

Citations:

Zbl 1360.83030

References:

[1] Angelopoulos, Y.; Aretakis, S.; Gajic, D., Late-time asymptotics for the wave equation on extremal Reissner-Nordström backgrounds, (2018) · Zbl 1381.83051
[2] Brady, P. R.; Moss, I. G.; Myers, R. C., Cosmic censorship: as strong as ever, Phys. Rev. Lett., 80, 3432-3435, (1998) · Zbl 0949.83051 · doi:10.1103/PhysRevLett.80.3432
[3] Bony, J-F; Häfner, D., Decay and non-decay of the local energy for the wave equation in the De Sitter-Schwarzschild metric, Commun. Math. Phys., 282, 697-719, (2008) · Zbl 1159.35007 · doi:10.1007/s00220-008-0553-y
[4] Carter, B.; deWitt, C.; de Witt, B., Black hole equilibrium states part I: analytic and geometric properties of the Kerr solutions, Black Holes—Les Astres Occlus, 61-124, (1973), New York: Taylor and Francis, New York
[5] Cardoso, V.; Costa, J. L.; Destounis, K.; Hintz, P.; Jansen, A., Quasinormal modes and strong cosmic censorship, Phys. Rev. Lett., 120, (2018) · doi:10.1103/PhysRevLett.120.031103
[6] Costa, J. L.; Girão, P. M.; Natário, J.; Silva, J. D., On the global uniqueness for the Einstein-Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and extendibility of the solutions, Ann. PDE, 3, 8, (2017) · Zbl 1396.83005 · doi:10.1007/s40818-017-0028-6
[7] Costa, J. L.; Girão, P. M.; Natário, J.; Silva, J. D., On the occurrence of mass inflation for the Einstein-Maxwell-scalar field system with a cosmological constant and an exponential Price law, Commun. Math. Phys., 361, 289-341, (2018) · Zbl 1398.83019 · doi:10.1007/s00220-018-3122-z
[8] Chandrasekhar, S.; Hartle, J. B., On crossing the Cauchy horizon of a Reissner-Nordström black-hole, Proc. R. Soc. A, 384, 301-315, (1982) · Zbl 0942.83507 · doi:10.1098/rspa.1982.0160
[9] Chandrasekhar, S., The Mathematical Theory of Black Holes, (1983), Oxford: Oxford University Press, Oxford · Zbl 0511.53076
[10] Christodoulou, D., On the global initial value problem and the issue of singularities, Class. Quantum Grav., 16, A23-A35, (1999) · Zbl 0955.83001 · doi:10.1088/0264-9381/16/12A/302
[11] Christodoulou, D., The instability of naked singularities in the gravitational collapse of a scalar field, Ann. Math., 149, 183-217, (1999) · Zbl 1126.83305 · doi:10.2307/121023
[12] Christodoulou, D., The Formation of Black Holes in General Relativity, (2009), Zürich: European Mathematical Society, Zürich · Zbl 1197.83004
[13] Dafermos, M., The interior of charged black holes and the problem of uniqueness in general relativity, Commun. Pure Appl. Math., 58, 445-504, (2005) · Zbl 1071.83037 · doi:10.1002/cpa.20071
[14] Dafermos, M., Black holes without spacelike singularities, Commun. Math. Phys., 332, 729-757, (2014) · Zbl 1301.83021 · doi:10.1007/s00220-014-2063-4
[15] Dias, O. J C.; Eperon, F. C.; Reall, H. S.; Santos, J. E., Strong cosmic censorship in de Sitter space, Phys. Rev. D, 97, (2018) · doi:10.1103/PhysRevD.97.104060
[16] Dafermos, M.; Luk, J., The interior of dynamical vacuum black holes I: the {\it C}0-stability of the Kerr Cauchy horizon, (2017)
[17] Dafermos, M.; Rodnianski, I., The wave equation on Schwarzschild-de Sitter spacetimes, (2007)
[18] Dafermos, M.; Rodnianski, I.; Shlapentokh-Rothman, Y., A scattering theory for the wave equation on Kerr black hole exteriors, Ann. Sci. l’ENS, 51, 371-486, (2018) · Zbl 1508.83015
[19] Dafermos, M.; Shlapentokh-Rothman, Y., Time-translation invariance of scattering maps and blue-shift instabilities on Kerr black hole spacetimes, Commun. Math. Phys., 350, 985-1016, (2017) · Zbl 1360.83030 · doi:10.1007/s00220-016-2771-z
[20] Dyatlov, S., Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole, Commun. Math. Phys., 306, 119-163, (2011) · Zbl 1223.83029 · doi:10.1007/s00220-011-1286-x
[21] Franzen, A. T., Boundedness of massless scalar waves on Reissner-Nordström interior backgrounds, Commun. Math. Phys., 343, 601-650, (2016) · Zbl 1342.35386 · doi:10.1007/s00220-015-2440-7
[22] Franzen, A. T., Boundedness of massless scalar waves on Kerr interior backgrounds, (2017) · Zbl 1435.83082
[23] Gajic, D., Linear waves in the interior of extremal black holes I, Commun. Math. Phys., 353, 717-770, (2017) · Zbl 1368.83040 · doi:10.1007/s00220-016-2800-y
[24] Gajic, D., Linear waves in the interior of extremal black holes II, Ann. Henri Poincaré, 18, 4005-4081, (2017) · Zbl 1382.83055 · doi:10.1007/s00023-017-0614-x
[25] Hintz, P., Boundedness and decay of scalar waves at the Cauchy horizon of the Kerr spacetime, Comment. Math. Helv., 92, 801-837, (2017) · Zbl 1379.58011 · doi:10.4171/CMH/425
[26] Hintz, P., Non-linear stability of the Kerr-Newman-de Sitter family of charged black holes, Ann. PDE, 4, 11, (2018) · Zbl 1396.83018 · doi:10.1007/s40818-018-0047-y
[27] Hiscock, W. A., Evolution of the interior of a charged black hole, Phys. Rev. Lett., 83A, 110-112, (1981) · doi:10.1016/0375-9601(81)90508-9
[28] Hod, S., Strong cosmic censorship in charged black-hole spacetimes: as strong as ever, (2018) · Zbl 1415.83035
[29] Hintz, P.; Vasy, A., The global non-linear stability of the Kerr-de Sitter family of black holes, Acta Mathematica, 220, 1-206, (2018) · Zbl 1391.83061 · doi:10.4310/ACTA.2018.v220.n1.a1
[30] Hintz, P.; Vasy, A., Analysis of linear waves near the Cauchy horizon of cosmological black holes, J. Math. Phys., 58, (2017) · Zbl 1370.83119 · doi:10.1063/1.4996575
[31] Klainerman, S.; Rodnianski, I.; Szeftel, J., The bounded {\it L}2 curvature conjecture, Inventiones Math., 202, 91-216, (2015) · Zbl 1330.53089 · doi:10.1007/s00222-014-0567-3
[32] Kehle, C.; Shlapentokh-Rothman, Y., A scattering theory for linear waves on the interior of Reissner-Nordström black holes, (2018) · Zbl 1419.83038
[33] Luk, J.; Oh, S-J, Proof of linear instability of the Reissner-Nordström Cauchy horizon under scalar perturbations, Duke Math. J., 166, 437-493, (2017) · Zbl 1373.35306 · doi:10.1215/00127094-3715189
[34] Luk, J.; Oh, S-J, Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data I. The interior of the black hole region, (2017)
[35] Luk, J.; Oh, S-J, Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data II. The exterior of the black hole region, (2017)
[36] Luk, J.; Rodnianski, I., Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations, Camb. J. Math., 5, 435-570, (2017) · Zbl 1397.35308 · doi:10.4310/CJM.2017.v5.n4.a1
[37] Luk, J.; Sbierski, J., Instability results for the wave equation in the interior of Kerr black holes, J. Funct. Anal., 271, 1948-1995, (2016) · Zbl 1346.83044 · doi:10.1016/j.jfa.2016.06.013
[38] Luk, J., Weak null singularities in general relativity, J. Am. Math. Soc., 31, 1-63, (2018) · Zbl 1377.83062 · doi:10.1090/jams/888
[39] McNamara, J. M., Behaviour of scalar perturbations of a Reissner-Nordström black hole inside the event horizon, Proc. R. Soc. A, 364, 121-134, (1978) · doi:10.1098/rspa.1978.0191
[40] McNamara, J. M., Instability of black hole inner horizons, Proc. R. Soc. A, 358, 499-517, (1978) · doi:10.1098/rspa.1978.0024
[41] Olver, F. W J., Asymptotics and Special Functions, (1997), Wellesley, MA: A K Peters, Ltd., Wellesley, MA · Zbl 0982.41018
[42] Ori, A., Inner structure of a charged black hole: an exact mass-inflation solution, Phys. Rev. Lett., 67, 789, (1991) · Zbl 0990.83529 · doi:10.1103/PhysRevLett.67.789
[43] Ori, A., Perturbative approach to the inner structure of a rotating black hole, Gen. Relativ. Gravit., 29, 881-929, (1997) · Zbl 0883.53068 · doi:10.1023/A:1018887317656
[44] Penrose, R.; deWitt, C.; Wheeler, J., Structure of space-time, Battelle Rencontres. 1967 Lectures in Mathematics and Physics, (1968), New York: Benjamin, New York · Zbl 0174.55901
[45] Penrose, R.; Dewitt-Morette, C., Gravitational collapse, Gravitational Radiation and Gravitational Collapse, 82-91, (1974), Netherlands: Springer, Netherlands
[46] Poisson, E.; Israel, W., Inner-horizon instability and mass inflation in black holes, Phys. Rev. Lett., 63, 1663-1666, (1989) · doi:10.1103/PhysRevLett.63.1663
[47] Reall, H., A possible failure of determinism in general relativity, Physics, 11, 6, (2018) · doi:10.1103/Physics.11.6
[48] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. I, (1980), New York: Academic, New York · Zbl 0459.46001
[49] Sbierski, J., Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes, Anal. PDE, 8, 1379-1420, (2015) · Zbl 1343.35229 · doi:10.2140/apde.2015.8.1379
[50] Sbierski, J., The {\it C}_0-inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian geometry, J. Differ. Geom., 108, 319-378, (2018) · Zbl 1401.53058 · doi:10.4310/jdg/1518490820
[51] Shlapentokh-Rothman, Y., Exponentially growing finite energy solutions for the Klein-Gordon equation on sub-extremal Kerr spacetimes, Commun. Math. Phys., 329, 859-891, (2014) · Zbl 1294.83062 · doi:10.1007/s00220-014-2033-x
[52] Vasy, A., Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov), Inventiones Math., 194, 381-513, (2013) · Zbl 1315.35015 · doi:10.1007/s00222-012-0446-8
[53] Van de Moortel, M., Stability and instability of the sub-extremal Reissner-Nordström black hole interior for the Einstein-Maxwell-Klein-Gordon equations in spherical symmetry, Commun. Math. Phys., 360, 103-168, (2018) · Zbl 1394.83008 · doi:10.1007/s00220-017-3079-3
[54] Warnick, C. M., On quasinormal modes of asymptotically anti-de Sitter black holes, Commun. Math. Phys., 333, 959-1035, (2015) · Zbl 1308.83107 · doi:10.1007/s00220-014-2171-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.