×

A weighted Nitsche’s method for interface problems with higher-order simplex elements. (English) Zbl 1491.74095

Summary: We develop a numerical strategy based on a weighted Nitsche’s approach to model a general class of interface problems with higher-order simplex elements. We focus attention on problems in which the jump in the field quantities across an interface is given. The presented method generalizes the weighted Nitsche’s approach of the last author et al. [Comput. Methods Appl. Mech. Eng. 225–228, 44–54 (2012; Zbl 1253.74096)] to higher-order simplices. Specifically, for higher-order simplex elements, we derive closed-form analytical expressions for the stabilization parameter arising in Nitsche’s variational form. We also prescribe corresponding weights for the discrete fluxes in the consistency terms present in Nitsche’s variational form. The prescribed choice of weights is shown to be optimal such that it minimizes the stabilization parameter while ensuring coercivity of the bilinear form. In the presence of large contrasts in material properties and mesh sizes, the proposed weighting yields better conditioned systems than the traditional Nitsche formulation by bounding the maximum eigenvalue of the discrete system from above. Further, the geometrical representation of curved interfaces is improved through a hierarchical local renement approach. Several numerical examples are presented with quadratic triangles to demonstrate the efficacy of the presented method.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74E05 Inhomogeneity in solid mechanics

Citations:

Zbl 1253.74096

Software:

CutFEM; NURBS
Full Text: DOI

References:

[1] Ainsworth, M.; Rankin, R., Technical note: a note on the selection of the penalty parameter for discontinuous galerkin finite element schemes, Numer Methods Part Differ Equ, 28, 1099-1104 (2012) · doi:10.1002/num.20663
[2] Annavarapu C (2013) An efficient finite element method for interface problems. Ph.D. thesis, Duke University
[3] Annavarapu, C.; Hautefeuille, M.; Dolbow, JE, A robust nitsche’s formulation for interface problems, Comput Methods Appl Mech Eng, 225-228, 44-54 (2012) · Zbl 1253.74096 · doi:10.1016/j.cma.2012.03.008
[4] Annavarapu, C.; Hautefeuille, M.; Dolbow, JE, Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods, Int J Numer Meth Eng, 92, 2, 206-228 (2012) · Zbl 1352.74314 · doi:10.1002/nme.4343
[5] Annavarapu, C.; Hautefeuille, M.; Dolbow, JE, A nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part ii: Intersecting interfaces, Comput Methods Appl Mech Eng, 267, 318-341 (2013) · Zbl 1286.74066 · doi:10.1016/j.cma.2013.08.008
[6] Annavarapu, C.; Hautefeuille, M.; Dolbow, JE, A nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part i: Single interface, Comput Methods Appl Mech Eng, 268, 417-436 (2014) · Zbl 1295.74096 · doi:10.1016/j.cma.2013.09.002
[7] Annavarapu, C.; Settgast, RR; Johnson, SM; Fu, P.; Herbold, EB, A weighted nitsche stabilized method for small-sliding contact on frictional surfaces, Comput Methods Appl Mech Eng, 283, 763-781 (2015) · Zbl 1423.74644 · doi:10.1016/j.cma.2014.09.030
[8] Annavarapu, C.; Settgast, RR; Vitali, E.; Morris, JP, A local crack-tracking strategy to model three-dimensional crack propagation with embedded methods, Comput Methods Appl Mech Eng, 311, 815-837 (2016) · Zbl 1439.74340 · doi:10.1016/j.cma.2016.09.018
[9] Atallah, N.; Canuto, C.; Scovazzi, G., Analysis of the shifted boundary method for the stoke’s problem, Comput Methods Appl Mech Eng, 358, 112609 (2020) · Zbl 1441.76037 · doi:10.1016/j.cma.2019.112609
[10] Béchet, E.; Moës, N.; Wohlmouth, B., A stable lagrange multiplier space for stiff interface conditions within the extended finite element method, Int J Numer Meth Eng, 78, 8, 931-954 (2009) · Zbl 1183.74259 · doi:10.1002/nme.2515
[11] Benowitz, BA; Waisman, H., A spline-based enrichment function for arbitrary inclusions in extended finite element method with applications to finite deformations, Int J Numer Meth Eng, 95, 5, 361-386 (2013) · Zbl 1352.65469 · doi:10.1002/nme.4508
[12] Burman, E.; Claus, S.; Hansbo, P., Cutfem: discretizing geometry and partial differential equations, Int J Numer Meth Eng, 104, 7, 472-501 (2015) · Zbl 1352.65604 · doi:10.1002/nme.4823
[13] Cheng, KW; Fries, TP, Higher-order xfem for curved strong and weak discontinuities, Int J Numer Meth Eng, 82, 5, 564-590 (2010) · Zbl 1188.74052
[14] Dolbow, J.; Harari, I., An efficient finite element method for embedded interface problems, Int J Numer Meth Eng, 78, 2, 229-252 (2009) · Zbl 1183.76803 · doi:10.1002/nme.2486
[15] Dolbow, J.; Nadeau, J., On the use of effective properties for the fracture analysis of microstructured materials, Eng Fract Mech, 69, 1607-1634 (2002) · doi:10.1016/S0013-7944(02)00052-8
[16] Dréau, K.; Chevaugeon, N.; Moës, N., Studied x-fem enrichment to handle material interfaces with higher order finite element, Comput Methods Appl Mech Eng, 199, 29-32, 1922-1936 (2010) · Zbl 1231.74406 · doi:10.1016/j.cma.2010.01.021
[17] Duarte, CA; Oden, JT; Babuška, I., Generalized finite element methods for three-dimensional structural mechanics problems, Comput Struct, 77, 2, 215-232 (2000) · doi:10.1016/S0045-7949(99)00211-4
[18] Embar, A.; Dolbow, J.; Harari, I., Imposing dirichlet boundary conditions with Nitsche’s method and spline-based finite elements, Int J Numer Meth Eng, 83, 7, 877-898 (2010) · Zbl 1197.74178 · doi:10.1002/nme.2863
[19] Ferté, G.; Massin, P.; Moës, N., Interface problems with quadratic x-fem: design of a stable multiplier space and error analysis, Int J Numer Meth Eng, 100, 11, 834-870 (2014) · Zbl 1352.74350 · doi:10.1002/nme.4787
[20] Fries, TP, A corrected xfem approximation without problems in blending elements, Int J Numer Meth Eng, 75, 5, 503-532 (2008) · Zbl 1195.74173 · doi:10.1002/nme.2259
[21] Gracie, R.; Wang, HW; Belytschko, T., Blending in the extended nite element method by discontinuous Galerkin and assumed strain methods, Int J Numer Meth Eng, 74, 11, 1645-1669 (2008) · Zbl 1195.74175 · doi:10.1002/nme.2217
[22] Griebel M, Schweitzer M (2003) A particle-partition of unity method part v: Boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 519-542 · Zbl 1033.65102
[23] Gupta, V.; Duarte, CA; Babuška, I., A stable and optimally convergent generalized fem (sgfem) for linear elastic fracture mechanics, Comput Methods Appl Mech Eng, 266, 23-39 (2013) · Zbl 1286.74102 · doi:10.1016/j.cma.2013.07.010
[24] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput Methods Appl Mech Eng, 191, 47-48, 5537-5552 (2002) · Zbl 1035.65125 · doi:10.1016/S0045-7825(02)00524-8
[25] Hansbo, A.; Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput Methods Appl Mech Eng, 193, 33-35, 3523-3540 (2004) · Zbl 1068.74076 · doi:10.1016/j.cma.2003.12.041
[26] Hautefeuille, M.; Annavarapu, C.; Dolbow, JE, Robust imposition of Dirichlet boundary conditions on embedded surfaces, Int J Numer Meth Eng, 90, 1, 40-64 (2012) · Zbl 1242.76124 · doi:10.1002/nme.3306
[27] Huynh, LT; Nguyen, N.; Peraire, J.; Khoo, B., A high-order hybridizable discontinuous Galerkin method for elliptic interface problems, Int J Numer Meth Eng, 93, 2, 183-200 (2013) · Zbl 1352.65513 · doi:10.1002/nme.4382
[28] Ji, H.; Chopp, D.; Dolbow, JE, A hybrid extended finite element/level set method for modeling phase transformations, Int J Numer Meth Eng, 54, 8, 1209-1233 (2002) · Zbl 1098.76572 · doi:10.1002/nme.468
[29] Jiang, W.; Annavarapu, C.; Dolbow, JE; Harari, I., A robust Nitsche’s formulation for interface problems with spline-based finite elements, Int J Numer Meth Eng, 104, 7, 676-696 (2015) · Zbl 1352.65515 · doi:10.1002/nme.4766
[30] Jiang W, Kim TY (2016) Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries. Comput Methods Appl Mech Eng 299:144-160 · Zbl 1425.74469
[31] Jiang, W.; Spencer, BW; Dolbow, JE, Ceramic nuclear fuel fracture modeling with the extended finite element method, Eng Fract Mech, 223, 106713 (2020) · doi:10.1016/j.engfracmech.2019.106713
[32] Kamensky, D.; Hsu, MC; Schillinger, D.; Evans, JA; Aggarwal, A.; Bazilevs, Y.; Sacks, MS; Hughes, TJR, An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves, Comput Methods Appl Mech Eng, 284, 1005-1053 (2015) · Zbl 1423.74273 · doi:10.1016/j.cma.2014.10.040
[33] Kästner, M.; Müller, S.; Goldmann, J.; Spieler, C.; Brummund, J.; Ulbricht, V., Higher-order extended fem for weak discontinuities-level set representation, quadrature and application to magneto-mechanical problems, Int J Numer Meth Eng, 93, 13, 1403-1424 (2013) · Zbl 1352.74377 · doi:10.1002/nme.4435
[34] Legrain, G., A nurbs enhanced extended finite element approach for unfitted cad analysis, Comput Mech, 52, 2, 913-929 (2013) · Zbl 1311.65017 · doi:10.1007/s00466-013-0854-7
[35] Legrain, G.; Allais, R.; Cartraud, P., On the use of the extended finite element method with quadtree/octree meshes, Int J Numer Meth Eng, 86, 6, 717-743 (2011) · Zbl 1235.74296 · doi:10.1002/nme.3070
[36] Legrain, G.; Cartraud, P.; Perreard, I.; Moës, N., An x-fem and level set computational approach for image-based modelling: application to homogenization, Int J Numer Meth Eng, 86, 7, 915-934 (2011) · Zbl 1235.74297 · doi:10.1002/nme.3085
[37] Legrain, G.; Chevaugeon, N.; Dréau, K., High order x-fem and levelsets for complex microstructures: uncoupling geometry and approximation, Comput Methods Appl Mech Eng, 241-244, 172-189 (2012) · Zbl 1353.74071 · doi:10.1016/j.cma.2012.06.001
[38] Li, K.; Atallah, NM; Main, GA; Scovazzi, G., The shifted interface method: a flexible approach to embedded interface computations, Int J Numer Meth Eng, 121, 3, 492-518 (2020) · Zbl 07843207 · doi:10.1002/nme.6231
[39] Main, A.; Scovazzi, G., The shifted boundary method for embedded domain computations. Part i: Poisson and stokes problems, J Comput Phys, 372, 972-995 (2018) · Zbl 1415.76457 · doi:10.1016/j.jcp.2017.10.026
[40] Main, A.; Scovazzi, G., The shifted boundary method for embedded domain computations. Part ii: linear advection-diffusion and incompressible navier-stokes equations, J Comput Phys, 372, 996-1026 (2018) · Zbl 1415.76458 · doi:10.1016/j.jcp.2018.01.023
[41] Moës, N.; Béchet, E.; Tourbier, M., Imposing Dirichlet boundary conditions in the extended finite element method, Int J Numer Meth Eng, 67, 12, 1641-1669 (2006) · Zbl 1113.74072 · doi:10.1002/nme.1675
[42] Moës, N.; Belytschko, T., Extended finite element method for cohesive crack growth, Eng Fract Mech, 69, 7, 813-833 (2002) · doi:10.1016/S0013-7944(01)00128-X
[43] Moës, N.; Cloirec, M.; Cartraud, P.; Remacle, JF, A computational approach to handle complex microstructure geometries, Comput Methods Appl Mech Eng, 192, 3163-3177 (2003) · Zbl 1054.74056 · doi:10.1016/S0045-7825(03)00346-3
[44] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int J Numer Meth Eng, 46, 1, 131-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[45] Ruess, M.; Schillinger, D.; Bazilevs, Y.; Varduhn, V.; Rank, E., Weakly enforced essential boundary conditions for nurbs-embedded and trimmed nurbs geometries on the basis of the finite cell method, Int J Numer Meth Eng, 95, 10, 811-846 (2013) · Zbl 1352.65643 · doi:10.1002/nme.4522
[46] Schillinger, D.; Düster, A.; Rank, E., The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics, Int J Numer Meth Eng, 89, 9, 1171-1202 (2012) · Zbl 1242.74161 · doi:10.1002/nme.3289
[47] Schillinger, D.; Ruess, M., The finite cell method: a review in the context of higher-order structural analysis of cad and image-based geometric models, Arch Comput Meth Eng, 22, 391-455 (2015) · Zbl 1348.65056 · doi:10.1007/s11831-014-9115-y
[48] Schillinger, D.; Ruess, M.; Zander, N.; Bazilevs, Y.; Düster, A.; Rank, E., Small and large deformation analysis with the p- and b-spline versions of the finite cell method, Comput Mech, 50, 2, 445-478 (2012) · Zbl 1398.74401 · doi:10.1007/s00466-012-0684-z
[49] Shahbazi, K., An explicit expression for the penalty parameter of the interior penalty method, J Comput Phys, 205, 401-407 (2005) · Zbl 1072.65149 · doi:10.1016/j.jcp.2004.11.017
[50] Song, T.; Main, A.; Scovazzi, G.; Ricchiuto, M., The shifted boundary method for hyperbolic systems: embedded domain computations of linear waves and shallow water flows, J Comput Phys, 369, 45-79 (2018) · Zbl 1392.76010 · doi:10.1016/j.jcp.2018.04.052
[51] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T., Extended finite element method for three-dimensional crack modelling, Int J Numer Meth Eng, 48, 11, 1549-1570 (2000) · Zbl 0963.74067 · doi:10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
[52] Warburton, T.; Hesthaven, J., On the constants in hp-finite element trace inverse inequalities, Comput Methods Appl Mech Eng, 192, 2765-2773 (2003) · Zbl 1038.65116 · doi:10.1016/S0045-7825(03)00294-9
[53] Zhang, LT; Gerstenberger, A.; Wang, X.; Wall, WA, Immersed finite element method, Comput Methods Appl Mech Eng, 193, 2051-2067 (2004) · Zbl 1067.76576 · doi:10.1016/j.cma.2003.12.044
[54] Zhang, Z.; Jiang, W.; Dolbow, JE; Spencer, BW, A modified moment-fitted integration scheme for x-fem applications with history-dependent material data, Comput Mech, 62, 233-252 (2018) · Zbl 1446.74213 · doi:10.1007/s00466-018-1544-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.