×

A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: Intersecting interfaces. (English) Zbl 1286.74066

Summary: We extend the weighted Nitsche’s method proposed in the first part [the authors, ibid. (2013; doi:10.1016/j.cma.2013.09.002)] to include multiple intersecting embedded interfaces. These intersections arise either inside a computational domain – where two internal interfaces intersect; or on the boundary of the computational domain – where an internal interface intersects with the external boundary. We propose a variational treatment of both the interfacial kinematics and the external Dirichlet constraints within Nitsche’s framework. We modify the numerical analysis to account for these intersections and provide an explicit expression for the weights and the method parameters that arise in the Nitsche variational form in the presence of junctions. Finally, we demonstrate the performance of the method for both perfectly-tied interfaces and perfectly-plastic sliding interfaces through several benchmark examples.

MSC:

74M10 Friction in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

Gmsh
Full Text: DOI

References:

[1] Espinosa, H. D.; Zavattieri, P., A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: theory and numerical implementation, Mech. Mater., 35, 3-6, 333-364 (2003)
[2] Espinosa, H. D.; Zavattieri, P., A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: numerical examples, Mech. Mater., 35, 3-6, 365-394 (2003)
[3] Maerten, L.; Maerten, F., Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: technique and industry applications, AAPG Bull., 90, 8, 1201-1226 (2006)
[4] Durand-Riard, P.; Caumon, G.; Muron, P., Balanced restoration of geological volumes with relaxed meshing constraints, Comput. Geosci., 36, 4, 441-452 (2010)
[5] Warner, D. H.; Molinari, J. F., Micromechanical finite element modeling of compressive fracture in confined alumina ceramic, Acta Mater., 54, 12, 5135-5145 (2006)
[6] Wei, Y.; Anand, L., Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals, J. Mech. Phys. Solids, 52, 11, 2587-2616 (2004) · Zbl 1084.74014
[7] Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H., Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties, J. Mech. Phys. Solids, 56, 8, 2618-2641 (2008) · Zbl 1171.74417
[8] Li, W.; Zabaras, N., A virtual environment for the interrogation of 3D polycrystalline microstructures including grain size effects, Comput. Mater. Sci., 44, 4, 1163-1177 (2009)
[9] Bhat, H. S.; Olives, M.; Dmowska, R.; Rice, J. R., Role of fault branches in earthquake rupture dynamics, J. Geophys. Res. Solid Earth, 112, B11 (2007)
[10] Marshall, S. T.; Cooke, M. L.; Owen, S. E., Effects of nonplanar fault topology and mechanical interaction on fault-slip distributions in the ventura basin, California, Bull. Seismol. Soc. Am., 98, 3, 1113-1127 (2008)
[11] Moës, N.; Cloirec, M.; Cartraud, P.; Remacle, J. F., A computational approach to handle complex microstructure geometries, Comput. Methods Appl. Mech. Eng., 192, 28, 3163-3177 (2003) · Zbl 1054.74056
[12] Hettich, T.; Ramm, E., Interface material failure modeled by the extended finite-element method and level sets, Comput. Methods Appl. Mech. Eng., 195, 37, 4753-4767 (2006) · Zbl 1154.74386
[13] Hettich, T.; Hund, A.; Ramm, E., Modeling of failure in composites by X-FEM and level sets within a multiscale framework, Comput. Methods Appl. Mech. Eng., 197, 5, 414-424 (2008) · Zbl 1169.74543
[14] Yvonnet, J.; Le Quang, H.; He, Q.-C., An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites, Comput. Mech., 42, 1, 119-131 (2008) · Zbl 1188.74076
[15] Legrain, G.; Cartraud, P.; Perreard, I.; Mos, N., An X-FEM and level set computational approach for image-based modelling: application to homogenization, Int. J. Numer. Methods Eng., 86, 7, 915-934 (2011) · Zbl 1235.74297
[16] Liu, F.; Borja, R. I., An extended finite element framework for slow-rate frictional faulting with bulk plasticity and variable friction, Int. J. Numer. Anal. Methods Geomech., 33, 13, 1535-1560 (2009) · Zbl 1273.74541
[17] Liu, F.; Borja, R. I., Finite deformation formulation for embedded frictional crack with the extended finite element method, Int. J. Numer. Methods Eng., 82, 6, 773-804 (2010) · Zbl 1188.74064
[18] Coon, E. T.; Shaw, B. E.; Spiegelman, M., A Nitsche-extended finite element method for earthquake rupture on complex fault systems, Comput. Methods Appl. Mech. Eng., 200, 2859-2870 (2011) · Zbl 1230.74176
[19] Sfantos, G.; Aliabadi, M. H., A boundary cohesive grain element formulation for modelling intergranular microfracture in polycrystalline brittle materials, Int. J. Numer. Methods Eng., 69, 8, 1590-1626 (2007) · Zbl 1194.74503
[20] Benedetti, I.; Aliabadi, M. H., A three-dimensional grain boundary formulation for microstructural modeling of polycrystalline materials, Comput. Mater. Sci., 67, 249-260 (2013)
[21] Huang, H.; Long, T. A.; Wan, J.; Brown, W. P., On the use of enriched finite element method to model subsurface features in porous media flow problems, Comput. Geosci., 15, 4, 721-736 (2011) · Zbl 1237.76193
[22] Simone, A.; Duarte, C. A.; Van der Giessen, E., A generalized finite element method for polycrystals with discontinuous grain boundaries, Int. J. Numer. Methods Eng., 67, 8, 1122-1145 (2006) · Zbl 1113.74076
[23] Sukumar, N.; Srolovitz, D. J.; Baker, T. J.; Prévost, J. H., Brittle fracture in polycrystalline microstructures with the extended finite element method, Int. J. Numer. Methods Eng., 56, 14, 2015-2037 (2003) · Zbl 1038.74652
[24] Ghahremani, F., Effect of grain boundary sliding on anelasticity of polycrystals, Int. J. Solids Struct., 16, 9, 825-845 (1980) · Zbl 0515.73117
[25] Kanit, T.; Forest, S.; Galliet, I.; Mounoury, V.; Jeulin, D., Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., 40, 13, 3647-3679 (2003) · Zbl 1038.74605
[26] Huet, C., Application of variational concepts to size effects in elastic heterogeneous bodies, J. Mech. Phys. Solids, 38, 6, 813-841 (1990)
[27] Geuzaine, C.; Remacle, J. F., Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Eng., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[29] Shabir, Z.; Van der Giessen, E.; Duarte, C. A.; Simone, A., The role of cohesive properties on intergranular crack propagation in brittle polycrystals, Model. Simul. Mater. Sci. Eng., 19, 3, 035006 (2011)
[30] Aragón, A. M.; Duarte, C. A.; Geubelle, P. H., Generalized finite element functions for discontinuous gradient fields, Int. J. Numer. Methods Eng., 82, 242-268 (2010) · Zbl 1188.74051
[31] Hansbo, A.; Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. Methods Appl. Mech. Eng., 193, 33-35, 3523-3540 (2004) · Zbl 1068.74076
[32] Béchet, E.; Moës, N.; Wohlmuth, B., A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method, Int. J. Numer. Methods Eng., 78, 8, 931-954 (2012) · Zbl 1183.74259
[33] Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T., Arbitrary branched and intersecting cracks with the extended finite element method, Int. J. Numer. Methods Eng., 48, 1741-1760 (2000) · Zbl 0989.74066
[35] Annavarapu, C.; Hautefeuille, M.; Dolbow, J. E., A robust Nitsche’s formulation for interface problems, Comput. Methods Appl. Mech. Eng., 225-228, 4, 44-54 (2012) · Zbl 1253.74096
[36] Dolbow, J. E.; Harari, I., An efficient finite element method for embedded interface problems, Int. J. Numer. Methods Eng., 78, 2, 229-252 (2009) · Zbl 1183.76803
[38] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math., 62, 4, 328-341 (2012) · Zbl 1316.65099
[39] Barbosa, H. J.C.; Hughes, T. J.R., The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition, Comput. Methods Appl. Math. Eng., 85, 1, 109-128 (1991) · Zbl 0764.73077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.