×

Archipelago groups are locally free. Corrigendum to: “Cotorsion and wild homology”. (English) Zbl 1491.55013

Summary: An Archipelago group is the quotient of the topologist’s product \(G = \circledast_{i \ge 1}G_i\) of a sequence \((G_i)_{i \ge 1}\) of groups modulo the normal closure of the subset \(\bigcup_{i \ge 1}G_i\) in \(G\). In this note we provide a simple proof of a result from [the authors, ibid. 221, No. 1, 275–290 (2017; Zbl 1421.55012)], namely that Archipelago groups are locally free.

MSC:

55Q20 Homotopy groups of wedges, joins, and simple spaces
20J06 Cohomology of groups
57M30 Wild embeddings
20K20 Torsion-free groups, infinite rank
20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20F38 Other groups related to topology or analysis

Citations:

Zbl 1421.55012
Full Text: DOI

References:

[1] Conner, G. R.; Hojka, W.; Meilstrup, M., Archipelago groups, Proceedings of the American Mathematical Society, 143, 4973-4988 (2015) · Zbl 1325.55007 · doi:10.1090/proc/12609
[2] Eda, K., Free σ-products and non-commutatively slender groups, Journal of Algebra, 148, 243-263 (1992) · Zbl 0779.20012 · doi:10.1016/0021-8693(92)90246-I
[3] K. Eda, Question and homomorphisms on archipelago groups, http://www.logic.info.waseda.ac.jp/∼eda/pdf/question.pdf.
[4] Griffiths, H. B., Infinite products of semi-groups and local connectivity, Proceedings of the London Mathematical Society, 6, 455-480 (1956) · Zbl 0071.01902 · doi:10.1112/plms/s3-6.3.455
[5] Herfort, W.; Hojka, W., Cotorsion and wild homology, Israel Journal of Mathematics, 221, 275-290 (2017) · Zbl 1421.55012 · doi:10.1007/s11856-017-1566-z
[6] Magnus, W.; Karrass, A.; Solitar, D., Combinatorial Group Theory (2004), Mineola, NY: Dover, Mineola, NY · Zbl 1130.20307
[7] Morgan, J. W.; Morrison, I., A van Kampen theorem for weak joins, Proceedings of the London Mathematical Society, 53, 562-576 (1986) · Zbl 0609.57002 · doi:10.1112/plms/s3-53.3.562
[8] Robinson, D. J S., A Course in the Theory of Groups (1996), New York: Springer, New York · doi:10.1007/978-1-4419-8594-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.