×

Stability analysis of fixed point of fractional-order coupled map lattices. (English) Zbl 1491.39006

Summary: We study the stability of synchronized fixed-point state for linear fractional-order coupled map lattice (CML). We observe that the eigenvalues of the connectivity matrix determine the stability of this system as in integer-order CML. These eigenvalues can be determined exactly in certain cases. We find exact bounds in a one-dimensional lattice with translationally invariant coupling using the theory of circulant matrices. This can be extended to any finite dimension. Similar analysis can be carried out for the synchronized fixed point of nonlinear coupled fractional maps where eigenvalues of the Jacobian matrix play the same role. The analysis is generic and demonstrates that the eigenvalues of connectivity matrix play a pivotal role in the stability analysis of synchronized fixed point even in coupled fractional maps.

MSC:

39A30 Stability theory for difference equations
39A13 Difference equations, scaling (\(q\)-differences)
26A33 Fractional derivatives and integrals
15A18 Eigenvalues, singular values, and eigenvectors

References:

[1] Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1998), Elsevier · Zbl 0922.45001
[2] Beghin, L.; Mainardi, F.; Garrappa, R., Nonlocal and fractional operators (2021), Springer
[3] Ott, E., Chaos in dynamical systems (2002), Cambridge University Press · Zbl 1006.37001
[4] Strogatz, S. H., Nonlinear dynamics and chaos with student solutions manual: with applications to physics, biology, chemistry, and engineering (2018), CRC Press
[5] Bohr, T.; Bak, P.; Jensen, M. H., Transition to chaos by interaction of resonances in dissipative systems. II. Josephson junctions, charge-density waves, and standard maps, Phys Rev A, 30, 1970-1981 (1984)
[6] Tredicce, J. R.; Arecchi, F. T.; Lippi, G. L.; Puccioni, G. P., Instabilities in lasers with an injected signal, J Opt Soc Amer B, 2, 1, 173-183 (1985)
[7] DeTienne, D.; Gray, G.; Agrawal, G.; Lenstra, D., Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugate mirror, IEEE J Quantum Electron, 33, 5, 838-844 (1997)
[8] Glass, L., Cardiac arrhythmias and circle maps- a classical problem, Chaos, 1, 1, 13-19 (1991) · Zbl 0900.92093
[9] Tufaile, A.; Sartorelli, J., The circle map dynamics in air bubble formation, Phys Lett A, 287, 1, 74-80 (2001) · Zbl 1329.76005
[10] Ferretti, A.; Rahman, N., A study of coupled logistic map and its applications in chemical physics, Chem Phys, 119, 2-3, 275-288 (1988)
[11] Storch, L. S.; Pringle, J. M.; Alexander, K. E.; Jones, D. O., Revisiting the logistic map: a closer look at the dynamics of a classic chaotic population model with ecologically realistic spatial structure and dispersal, Theor Popul Biol, 114, 10-18 (2017)
[12] Edelman, M., Maps with power-law memory: direct introduction and Eulerian numbers, fractional maps, and fractional difference maps, Handb Fract Calcul Appl, 2, 47-63 (2019)
[13] Kaneko, K., Towards thermodynamics of spatiotemporal chaos, Prog Theor Phys Supp, 99, 263-287 (1989)
[14] Shenoy, S.; Lookman, T., Strain pseudospins with power-law interactions: Glassy textures of a cooled coupled-map lattice, Phys Rev B, 78, 14, Article 144103 pp. (2008)
[15] Yanagita, T.; Kaneko, K., Coupled map lattice model for convection, Phys Lett A, 175, 6, 415-420 (1993)
[16] Kessler, D. A.; Levine, H.; Reynolds, W. N., Coupled-map lattice model for crystal growth, Phys Rev A, 42, 10, 6125 (1990)
[17] Barkley, D., A coupled-map lattice for simulating waves in excitable media, (Nonlinear structures in physical systems (1990), Springer), 192-197
[18] Kamil, S.; Menon, G. I.; Sinha, S., A coupled map lattice model for rheological chaos in sheared nematic liquid crystals, Chaos, 20, 4, Article 043123 pp. (2010) · Zbl 1311.76008
[19] Edelman, M., On stability of fixed points and chaos in fractional systems, Chaos, 28, 2, Article 023112 pp. (2018) · Zbl 1390.39024
[20] Stanisławski, R.; Latawiec, K. J., Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability, Bull Pol Acad Sci Tech Sci, 61, 2 (2013)
[21] Čermák, J.; Győri, I.; Nechvátal, L., On explicit stability conditions for a linear fractional difference system, Fract Calc Appl Anal, 18, 3, 651-672 (2015) · Zbl 1320.39004
[22] Gade, P. M.; Bhalekar, S., On fractional order maps and their synchronization, Fractals, 29, 6, 2150150 (2021) · Zbl 1489.39028
[23] Abu-Saris, R.; Al-Mdallal, Q., On the asymptotic stability of linear system of fractional-order difference equations, Fract Calc Appl Anal, 16, 3, 613-629 (2013) · Zbl 1312.39019
[24] Busłowicz, M.; Ruszewski, A., Necessary and sufficient conditions for stability of fractional discrete-time linear state-space systems, Bull Polish Acad Sci Tech Sci, 61, 4, 779-786 (2013)
[25] Tarasov, V. E., Fractional integro-differential equations for electromagnetic waves in dielectric media, Theoret Math Phys, 158, 3, 355-359 (2009) · Zbl 1177.78020
[26] Magin, R., Fractional calculus in bioengineering, part 1, Crit Rev Biomed Eng, 32, 1 (2004)
[27] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev Modern Phys, 65, 3, 851 (1993) · Zbl 1371.37001
[28] Amritkar, R.; Gade, P., Wavelength doubling bifurcations in coupled map lattices, Phys Rev Lett, 70, 22, 3408 (1993)
[29] Ferreira, R. A.; Torres, D. F., Fractional h-difference equations arising from the calculus of variations, Appl Anal Discrete Math, 110-121 (2011) · Zbl 1289.39007
[30] Bastos, N. R.; Ferreira, R. A.; Torres, D. F., Discrete-time fractional variational problems, Signal Process, 91, 3, 513-524 (2011) · Zbl 1203.94022
[31] Mozyrska, D.; Wyrwas, M., The Z-transform method and delta type fractional difference operators, Discrete Dyn Nat Soc, 2015 (2015) · Zbl 1418.44003
[32] Fulai, C.; Xiannan, L.; Yong, Z., Existence results for nonlinear fractional difference equation, Adv Difference Equ (2011) · Zbl 1207.39012
[33] Amritkar, R.; Gade, P.; Gangal, A.; Nandkumaran, V., Stability of periodic orbits of coupled-map lattices, Phys Rev A, 44, 6, R3407 (1991)
[34] Pikovsky, A. S.; Kurths, J., Collective behavior in ensembles of globally coupled maps, Physica D, 76, 4, 411-419 (1994) · Zbl 0813.34045
[35] Carretero-González, R.; Ørstavik, S.; Huke, J.; Broomhead, D.; Stark, J., Thermodynamic limit from small lattices of coupled maps, Phys Rev Lett, 83, 18, 3633 (1999)
[36] Parekh, N.; Ravi Kumar, V.; Kulkarni, B., Synchronization and control of spatiotemporal chaos using time-series data from local regions, Chaos, 8, 1, 300-306 (1998) · Zbl 0971.37019
[37] Carretero-Gonzalez, R.; O/rstavik, S.; Huke, J.; Broomhead, D.; Stark, J., Scaling and interleaving of subsystem Lyapunov exponents for spatio-temporal systems, Chaos, 9, 2, 466-482 (1999) · Zbl 0983.37109
[38] Ruelle, D., Large volume limit of the distribution of characteristic exponents in turbulence, Comm Math Phys, 87, 2, 287-302 (1982) · Zbl 0546.76083
[39] Gade, P.; Amritkar, R., Spatially periodic orbits in coupled-map lattices, Phys Rev E, 47, 1, 143 (1993)
[40] Gade, P. M.; Hu, C.-K., Synchronization and coherence in thermodynamic coupled map lattices with intermediate-range coupling, Phys Rev E, 60, 4, 4966 (1999)
[41] Gade, P. M., Synchronization of oscillators with random nonlocal connectivity, Phys Rev E, 54, 1, 64 (1996)
[42] Pakhare, S. S.; Bhalekar, S.; Gade, P. M., Synchronization in coupled integer and fractional-order maps, Chaos Solitons Fractals, 156, Article 111795 pp. (2022) · Zbl 1506.34019
[43] Robert, M., Simple mathematical models with complicated dynamics, Nature, 261, 459-467 (1976) · Zbl 1369.37088
[44] Glass, L.; Perez, R., Fine structure of phase locking, Phys Rev Lett, 48, 26, 1772 (1982)
[45] Pakhare, S. S.; Daftardar-Gejji, V.; Badwaik, D. S.; Deshpande, A.; Gade, P. M., Emergence of order in dynamical phases in coupled fractional gauss map, Chaos Solitons Fractals, 135, Article 109770 pp. (2020) · Zbl 1489.39020
[46] Amritkar, R. E.; Gade, P. M., Wavelength doubling bifurcations in coupled map lattices, Phys Rev Lett, 70, 3408-3411 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.