×

The Riemann problem for the nonisentropic Baer-Nunziato model of two-phase flows. (English) Zbl 1491.35290

Summary: The Riemann problem for the well-known Baer-Nunziato model of two-phase flows is solved. The system consists of seven partial differential equations with nonconservative terms. The most challenging problem is that this model possesses a double eigenvalue. Although characteristic speeds coincide, the curves of composite waves associated with different characteristic fields can be still constructed. They will also be incorporated into composite wave curves to form solutions of the Riemann problem. Solutions of the Riemann problem will be constructed when initial data are in supersonic regions, subsonic regions, or in both kinds of regions. A unique solution and solutions with resonance are also obtained.

MSC:

35L67 Shocks and singularities for hyperbolic equations
35L60 First-order nonlinear hyperbolic equations
35Q35 PDEs in connection with fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
76T99 Multiphase and multicomponent flows
Full Text: DOI

References:

[1] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow., 12, 861-889 (1986) · Zbl 0609.76114
[2] Dal Maso, G.; LeFloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl. (9), 74, 483-548 (1995) · Zbl 0853.35068
[3] Thanh, M. D., A phase decomposition approach and the Riemann problem for a model of two-phase flows, J. Math. Anal. Appl., 418, 569-594 (2014) · Zbl 1332.35206
[4] Thanh, M. D.; Cuong, D. H., Existence of solutions to the Riemann problem for a model of two-phase flows, Electron. J. Differ. Equ., 2015, 1-18 (2015) · Zbl 1315.35124
[5] Thanh, M. D.; Cuong, D. H.; Vinh, D. X., The resonant cases and the Riemann problem for a model of two-phase flows, J. Math. Anal. Appl., 494, Article 124578 pp. (2021) · Zbl 1457.76180
[6] Bzil, J. B.; Menikoff, R.; Son, S. F.; Kapila, A. K.; Steward, D. S., Two-phase modeling of a deflagration-to-detonation transition in granular materials: A critical examination of modelling issues, Phys. Fluids, 11, 378-402 (1999) · Zbl 1147.76317
[7] Keyfitz, B. L.; Sander, R.; Sever, M., Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow, Discrete Contin. Dyn. Syst. Ser. B, 3, 541-563 (2003) · Zbl 1055.35074
[8] LeFloch, P. G.; Tzavaras, A. E., Representation of weak limits and definition of nonconservative products, SIAM J. Math. Anal., 30, 1309-1342 (1999) · Zbl 0939.35115
[9] Andrianov, N.; Warnecke, G., The Riemann problem for the baer-nunziato two-phase flow model, J. Comput. Phys., 195, 434-464 (2004) · Zbl 1115.76414
[10] LeFloch, P. G.; Thanh, M. D., A Godunov-type method for the shallow water equations with variable topography in the resonant regime, J. Comput. Phys., 230, 7631-7660 (2011) · Zbl 1453.35150
[11] Ambroso, A.; Chalons, C.; Raviart, P.-A., A Godunov-type method for the seven-equation model of compressible two-phase flow, Comput. & Fluids, 54, 67-91 (2012) · Zbl 1291.76212
[12] D.H. Cuong, M.D. Thanh, A well-balanced van Leer-type numerical scheme for shallow water equations with variable topography, Adv. Comput. Math. http://dx.doi.org/10.1007/s10444-017-9521-4. · Zbl 1465.35338
[13] Cuong, D. H.; Thanh, M. D., A Godunov-type scheme for the isentropic model of a fluid flow in a nozzle with variable cross-section, Appl. Math. Comput., 256, 602-629 (2015) · Zbl 1338.76084
[14] Schwendeman, D. W.; Wahle, C. W.; Kapila, A. K., The Riemann problem and a high-resolution godunov method for a model of compressible two-phase flow, J. Comput. Phys., 212, 490-526 (2006) · Zbl 1161.76531
[15] Cuong, D. H.; Thanh, M. D., Building a Godunov-type numerical scheme for a model of two-phase flows, Comput. & Fluids, 148, 69-81 (2017) · Zbl 1410.76214
[16] Saurel, R.; Abgrall, R., A multi-phase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467 (1999) · Zbl 0937.76053
[17] Cuong, D. H.; Thanh, M. D., Constructing a Godunov-type scheme for the model of a general fluid flow in a nozzle with variable cross-section, Appl. Math. Comput., 305, 136-160 (2017) · Zbl 1411.76082
[18] LeFloch, P. G., Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Form (1989), Institute for Mathematics and its Application: Institute for Mathematics and its Application Minneapolis, Preprint 593
[19] Isaacson, E.; Temple, B., Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math., 52, 1260-1278 (1992) · Zbl 0794.35100
[20] Isaacson, E.; Temple, B., Convergence of the 2 ×2 godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math., 55, 625-640 (1995) · Zbl 0838.35075
[21] Marchesin, D.; Paes-Leme, P. J., A Riemann problem in gas dynamics with bifurcation. Hyperbolic partial differential equations, III, Comput. Math. Appl. A, 12, 433-455 (1986) · Zbl 0611.35060
[22] Ripa, P., Conservation laws for primitive equations models with inhomogeneous layers, Geophys. Astrophys. Fluid Dyn., 70, 85-111 (1993)
[23] Ripa, P., On improving a one-layer ocean model with thermodynamics, J. Fluid Mech., 303, 169-201 (1995) · Zbl 0856.76008
[24] Goatin, P.; LeFloch, P. G., The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 21, 881-902 (2004) · Zbl 1086.35069
[25] LeFloch, P. G.; Thanh, M. D., The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Commun. Math. Sci., 1, 763-797 (2003) · Zbl 1091.35044
[26] Andrianov, N.; Warnecke, G., On the solution to the Riemann problem for the compressible duct flow, SIAM J. Appl. Math., 64, 878-901 (2004) · Zbl 1065.35191
[27] Thanh, M. D., The Riemann problem for a non-isentropic fluid in a nozzle with discontinuous cross-sectional area, SIAM J. Appl. Math., 69, 1501-1519 (2009) · Zbl 1181.35146
[28] Thanh, M. D., The Riemann problem for the shallow water equations with horizontal temperature gradients, Appl. Math. Comput., 325, 159-178 (2018) · Zbl 1428.35216
[29] Ambroso, A.; Chalons, C.; Coquel, F.; Galié, T., Relaxation and numerical approximation of a two-fluid two-pressure diphasic model, M2AN Math. Model Numer. Anal., 43, 1063-1097 (2009) · Zbl 1422.76178
[30] Botchorishvili, R.; Perthame, B.; Vasseur, A., Equilibrium schemes for scalar conservation laws with stiff sources, Math. Comp., 72, 131-157 (2003) · Zbl 1017.65070
[31] Rosatti, G.; Begnudelli, L., The Riemann problem for the one-dimensional, free-surface shallow water equations with a bed step: theoretical analysis and numerical simulations, J. Comput. Phys., 229, 760-787 (2010) · Zbl 1253.76014
[32] Kröner, D.; Thanh, M. D., Numerical solutions to compressible flows in a nozzle with variable cross-section, SIAM J. Numer. Anal., 43, 796-824 (2005) · Zbl 1093.35050
[33] Kröner, D.; LeFloch, P. G.; Thanh, M. D., The minimum entropy principle for fluid flows in a nozzle with discontinuous cross-section, M2AN Math. Model Numer. Anal., 42, 425-442 (2008) · Zbl 1139.76048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.