×

Traveling curved fronts in the buffered bistable systems in \(\mathbb{R}^2\). (English) Zbl 1491.35113

Summary: We consider traveling curved fronts in the buffered bistable systems in \(\mathbb{R}^2\) and show that multiple stationary buffers (where buffers do not diffuse) cannot prevent the existence of V-shaped calcium concentration waves. In other words, for the buffered bistable systems we prove that there exist V-shaped traveling fronts in \(\mathbb{R}^2\) by constructing the proper supersolution and subsolution, applying the comparison principle and the fixed point theory.

MSC:

35C07 Traveling wave solutions
35B51 Comparison principles in context of PDEs
35K40 Second-order parabolic systems
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Brazhnik, P. K.; Tyson, J. J., On traveling wave solutions of Fisher’s equation in two spatial dimensions, SIAM J Appl Math, 60, 371-391 (2000) · Zbl 0957.35065
[2] Dockery, J. D.; Keener, J. P., Diffusive effects on dispersion in excitable media, SIAM J Appl Math, 49, 539-566 (1989) · Zbl 0703.35091
[3] Ninomiya, H.; Wu, C.-H., Traveling curved waves in two-dimensional excitable media, SIAM J Math Anal, 49, 777-817 (2017) · Zbl 1361.35088
[4] Terman, D., Propagation phenomena in the FitzHugh-Nagumo equations, Delft Progr Rep, 10, 67-73 (1985) · Zbl 0603.35047
[5] Berridge, M. J., Inositol trisphosphate and calcium signalling, Nature, 361, 315-325 (1993)
[6] Jaffe, L. F., Classes and mechanisms of calcium waves, Cell Calcium, 14, 736-745 (1993)
[7] Ridgway, E. B.; Gilkey, J. C.; Jaffe, L. F., Free calcium increases explosively in activating medaka eggs, Proc Natl Acad Sci USA, 74, 623-627 (1977)
[8] Dupont, G.; Goldbeter, A., Properties of intracellular \(C a^{2 +}\) waves generated by a model based on \(C a^{2 +}\) -induced \(C a^{2 +}\) release, Biophys J, 67, 2191-2204 (1994)
[9] Rooney, T. A.; Thomas, A. P., Intracellular calcium waves generated by Ins \((1, 4, 5) P_3\) dependent mechanisms, Cell Calcium, 14, 674-690 (1993)
[10] Allbritton, N.; Meyer, T.; Stryer, L., A range of messenger action of calcium ion and inositol-1, 4, 5-trisphosphate, Science, 258, 1812-1815 (1992)
[11] Neher, E.; Augustine, G. J., Calcium gradients and buffers in bovine chromaffin cells, J Physiol, 450, 273-301 (1992)
[12] Wagner, J.; Keizer, J., Effects of rapid buffers on \(C a^{2 +}\) diffusion and \(C a^{2 +}\) oscillations, Biophys J, 67, 447-456 (1994)
[13] Fife, P. C.; McLeod, J. B., The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch Ration Mech Anal, 65, 335-361 (1977) · Zbl 0361.35035
[14] Wagner, J.; Li, Y.-X.; Pearson, J.; Keizer, J., Simulation of the feitilization \(C a^{2 +}\) wave in xenopus laevis eggs, Biophys J, 75, 2088-2097 (1998)
[15] Tsai, J.-C.; Sneyd, J., Existence and stability of traveling waves in buffered systems, SIAM J Appl Math, 66, 237-265 (2005) · Zbl 1100.35049
[16] Tsai, J.-C., Asymptotic stability of traveling wave fronts in the buffered bistable system, SIAM J Math Anal, 39, 138-159 (2007) · Zbl 1149.35012
[17] Tsai, J.-C.; Sneyd, J., Are buffers boring? Uniqueness and asymptotical stability of traveling wave fronts in the buffered bistable system, J Math Biol, 54, 513-553 (2007) · Zbl 1115.92016
[18] Sneyd, J.; Dale, P. D.; Duffy, A., Traveling waves in buffered systems: applications to calcium waves, SIAM J Appl Math, 58, 1178-1192 (1998) · Zbl 0916.35052
[19] Slepchenko, B. M.; Schaff, J. C.; Choi, Y. S., Numerical approach to fast reactions in reaction-diffusion systems: application to buffered calcium waves in bistable model, J Comput Phys, 162, 186-218 (2000) · Zbl 0953.92014
[20] Lv, G., Stability of planar waves in the buffered bistable system, Math Methods Appl Sci, 35, 1078-1088 (2012) · Zbl 1252.35109
[21] Bonnet, A.; Hamel, F., Existence of nonplanar solutions of a simple model of premixed bunsen flames, SIAM J Math Anal, 31, 80-118 (1999) · Zbl 0942.35072
[22] Bu, Z.-H.; Guo, H.; Wang, Z.-C., Transition fronts of combustion reaction diffusion equations in \(\mathbb{R}^N\), J Dynam Differential Equations, 31, 1987-2015 (2019) · Zbl 1423.35161
[23] Hamel, F.; Monneau, R.; Roquejoffre, J. M., Stability of travelling waves in a model for conical flames in two space dimensions, Ann Sci éc Norm Supér, 37, 469-506 (2004) · Zbl 1085.35075
[24] Hamel, F.; Nadirashvili, N., Travelling fronts and entire solutions of the Fisher-KPP equation in \(\mathbb{R}^N\), Arch Ration Mech Anal, 157, 91-163 (2001) · Zbl 0987.35072
[25] Lam, K.-Y.; Ni, W.-M., Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM J Appl Math, 72, 1695-1712 (2012) · Zbl 1263.35133
[26] Ninomiya, H.; Taniguchi, M., Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J Differential Equations, 213, 204-233 (2005) · Zbl 1159.35378
[27] Sheng, W.-J.; Wang, Z.-C., Entire solutions of monotone bistable reaction-diffusion systems in \(\mathbb{R}^N\), Calc Var PDE, 57, 145 (2018) · Zbl 1403.35021
[28] Taniguchi, M., Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J Math Anal, 39, 319-344 (2007) · Zbl 1143.35073
[29] Haragus, M.; Scheel, A., Corner defects in almost planar interface propagation, Ann Inst H Poincaré Anal Non Linéaire, 23, 283-329 (2006) · Zbl 1098.35085
[30] Haragus, M.; Scheel, A., Almost planar waves in anisotropic media, Comm Partial Differential Equations, 31, 791-815 (2006) · Zbl 1098.35086
[31] Wang, Z.-C., Traveling curved fronts in monotone bistable systems, Discrete Contin Dyn Syst, 32, 2339-2374 (2012) · Zbl 1242.35148
[32] Wang, Z.-C.; Li, W.-T.; Ruan, S., Existence uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems, Sci China Math, 59, 1869-1908 (2016) · Zbl 1349.35198
[33] Ni, W.-M.; Taniguchi, M., Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw Heterog Media, 8, 379-395 (2013) · Zbl 1270.35171
[34] Kim, Y. J.; Ni, W.-M.; Taniguchi, M., Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations, Discrete Contin Dyn Syst, 33, 3707-3718 (2013) · Zbl 1277.35098
[35] Taniguchi, M., Convex compact sets in \(\mathbb{R}^{N - 1}\) give traveling fronts of cooperation-diffusion systems in \(\mathbb{R}^N ,\), J Differential Equations, 260, 4301-4338 (2016) · Zbl 1336.35105
[36] Niu, H.-T.; Bu, Z.-H.; Wang, Z.-C., Global stability of curved fronts in the belousov-zhabotinskii reaction-diffusion system in \(\mathbb{R}^2\), Nonlinear Anal RWA, 46, 493-524 (2019) · Zbl 1409.35097
[37] Niu, H.-T.; Wang, Z.-C.; Bu, Z.-H., Curved fronts in the belousov-zhabotinskii reaction-diffusion systems in \(\mathbb{R}^2\), J Differential Equations, 264, 5758-5801 (2018) · Zbl 1394.35220
[38] Zhang, W.-J.; Sneyd, J.; Tsai, J.-C., Curvature dependence of propagating velocity for a simplified calcium model, SIAM J Appl Math, 74, 1442-1462 (2014) · Zbl 1308.92037
[39] Martin, R. H.; Smith, H. L., Abstract functional-differential equations and reaction-diffusion systems, Trans Amer Math Soc, 321, 1-44 (1990) · Zbl 0722.35046
[40] Wang, Z.-C.; Li, W.-T.; Ruan, S., Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans Amer Math Soc, 361, 2047-2084 (2009) · Zbl 1168.35023
[41] Lunardi, A., Analytic semigroups and optimal regularity in parabolic problems (1995), Birkhäuser: Birkhäuser Berlin · Zbl 0816.35001
[42] Sattinger, D. H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ Math J, 21, 979-1000 (1971) · Zbl 0223.35038
[43] Protter, M. H.; Weinberger, H. F., Maximum principles in differential equations (1967), Prentice-Hall Inc. Englewood Cliffs: Prentice-Hall Inc. Englewood Cliffs New Jersey · Zbl 0153.13602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.