×

Are buffers boring? Uniqueness and asymptotical stability of traveling wave fronts in the buffered bistable system. (English) Zbl 1115.92016

Summary: Traveling waves of calcium are widely observed under the condition that the free cytosolic calcium is buffered. Thus it is of physiological interest to determine how buffers affect the properties of calcium waves. Here we summarise and extend previous results on the existence, uniqueness and stability of traveling wave solutions of the buffered bistable equation, which is the simplest possible model of the upstroke of a calcium wave. Taken together, the results show that immobile buffers do not change the existence, uniqueness or stability of the traveling wave, while mobile buffers can eliminate a traveling wave. However, if a wave exists in the latter case, it remains unique and stable.

MSC:

92C30 Physiology (general)
35K57 Reaction-diffusion equations
34A34 Nonlinear ordinary differential equations and systems
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Aronson, D.G., Weinberger, H.F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein, J.A.(ed.) Partial Differential Equations and Related Topics, Lecture notes in Mathematics, vol. 446, pp. 5–49. Springer, Berlin Heidelberg NewYork (1975) · Zbl 0325.35050
[2] Berridge M.J. (1993). Inositol trisphosphate and calcium signalling. Nature 361: 315–325 · doi:10.1038/361315a0
[3] Berridge M.J., Bootman M.D. and Roderick H.L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4: 517–529 · doi:10.1038/nrm1155
[4] Chen X.F. (1997). Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Diff. Eq. 2: 125–160 · Zbl 1023.35513
[5] Crooks E.C.M. and Toland J.F. (1998). Traveling waves for reaction-diffusion-convection systems. Topol. Methods Nonlin. Anal. 11: 19–43 · Zbl 0920.35075
[6] Dargan S.L. and Parker I. (2003). Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals. J. Physiol. 553: 775–788 · doi:10.1113/jphysiol.2003.054247
[7] Dargan S.L., Schwaller B. and Parker I. (2004). Spatiotemporal patterning of IP3-mediated Ca2+ signals in Xenopus oocytes by Ca2+-binding proteins. J. Physiol. 556: 447–461 · doi:10.1113/jphysiol.2003.059204
[8] Dupont G. and Goldbeter A. (1994). Properties of intracellular Ca2+ waves generated by a model based on Ca2+-induced Ca2+ release. Biophys. J. 67: 2191–2204 · doi:10.1016/S0006-3495(94)80705-2
[9] Falcke M. (2003). Buffers and oscillations in intracellular Ca2+ dynamics. Biophys. J. 84: 28–41 · doi:10.1016/S0006-3495(03)74830-9
[10] Fall, C.P., Marland, E.S., Wagner, J.M.,Tyson, J.J. (eds.): Computational Cell Biology. Springer, Berlin Heidelberg New York (2002) · Zbl 1010.92019
[11] Fife, P.C. Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, vol. 28, Springer, Berlin Heidelberg New York(1979) · Zbl 0403.92004
[12] Fife P.C. and McLeod J.B. (1977). The approach of solutions of non-linear diffusion equations to traveling front solutions. Arch. Rat. Mech. Anal. 65: 335–361 · Zbl 0361.35035 · doi:10.1007/BF00250432
[13] Fitzhugh R. (1960). Thresholds and plateaus in the Hodgkin-Huxley nerve conduction equations. J. Gen. Physiol. 43: 867–896 · doi:10.1085/jgp.43.5.867
[14] Fitzhugh R. (1961). Impulses and physiological states in models of nerve membrane. Biophys. J. 1: 445–466 · doi:10.1016/S0006-3495(61)86902-6
[15] Fontanilla R.A. and Nuccitelli R. (1998). Characterization of the sperm-induced calcium wave in Xenopus eggs using confocal microscopy. Biophys. J. 75: 2079–2087 · doi:10.1016/S0006-3495(98)77650-7
[16] Fogarty K.E., Kidd J.F., Tuft D.A. and Thorn P. (2000). Mechanisms underlying InsP3-evoked global Ca2+ signals in mouse pancreatic acinar cells. J. Physiol. 526(Pt 3): 515–526 · doi:10.1111/j.1469-7793.2000.t01-1-00515.x
[17] Friedman A. (1964). Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs · Zbl 0144.34903
[18] Girard S., Luckhoff A., Lechleiter J., Sneyd J. and Clapham D. (1992). Two-dimensional model of calcium waves reproduces the patterns observed in Xenopus laevis oocyte. Biophys. J. 61: 509–517 · doi:10.1016/S0006-3495(92)81855-6
[19] Guo J.-S. and Tsai J.-C. (2006). The asymptotic behavior of solutions of the buffered bistable system. J. Math. Biol. 53: 179–213 · Zbl 1100.92016 · doi:10.1007/s00285-006-0381-7
[20] Hodgkin A.L. and Huxley A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.), 117: 500–544
[21] Jafri M.S. and Keizer J. (1994). Diffusion of inositol 1,4,5-trisphosphate, but not Ca2+, is necessary for a class of inositol 1,4,5-trisphosphate-induced Ca2+ waves. Proc. Natl. Acad. Sci. USA 91: 9485–9489 · doi:10.1073/pnas.91.20.9485
[22] Jafri M.S. and Keizer J. (1995). On the roles of Ca2+ diffusion, Ca2+ buffers and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys. J. 69: 2139–2153 · doi:10.1016/S0006-3495(95)80088-3
[23] Keener J. and Sneyd J. (1998). Mathematical Physiology. Springer, Berlin Heidelberg New York · Zbl 0913.92009
[24] Klaasen G.A. and Troy W.C. (1981). The stability of traveling wave front solutions of a reaction-diffusion system. SIAM J. Appl. Math. 41: 145–167 · Zbl 0467.35011 · doi:10.1137/0141011
[25] Kupferman R., Mitra P.P., Hohenberg P.C. and Wang S.S.-H. (1997). Analytical calculation of intracellular calcium wave characteristics. Biophys. J. 72: 2430–2444 · doi:10.1016/S0006-3495(97)78888-X
[26] Ladyzenskaja, O.A., Solonnikov, V.A. Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type Translations of Mathematical Monographs. vol. 23. American Mathematical Society, Providence (1968)
[27] Lechleiter J.D. and Clapham D.E. (1992). Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell 69: 283–294 · doi:10.1016/0092-8674(92)90409-6
[28] Lieberman G.M. (1996). Second Order Parabolic Differential Equations. World Scientific, Singapore · Zbl 0884.35001
[29] Nagumo J., Arimoto S. and Yoshizawa S. (1962). An active pulse transmission line simulating nerve axon. Proc. IRE. 50: 2061–2070 · doi:10.1109/JRPROC.1962.288235
[30] Nuccitelli R., Yim D.L. and Smart T. (1993). The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1,4,5)P3. Dev. Biol. 158: 200–212 · doi:10.1006/dbio.1993.1179
[31] Nuccitelli, R.(ed.) A pratical guide to the study of calcium in living cells. Methods in Cell Biology, vol. 40. Academic, San Diego (1994)
[32] Protter M.H. and Weinberger H.F. (1999). Maximum Principles in Differential Equations. Springer, Berlin Heidelberg New York · Zbl 0153.13602
[33] Rauch J. and Smoller J. (1978). Qualitative theory of the FitzHugh–Nagumo equations. Adv. Math. 27: 12–44 · Zbl 0379.92002 · doi:10.1016/0001-8708(78)90075-0
[34] Redheffer R. and Walter W. (1978). Invariant sets for systems of partial differential equations I: parabolic equations. Arch. Ration. Mech. Anal. 67: 41–52 · Zbl 0377.35038 · doi:10.1007/BF00280826
[35] Roquejoffre J.-M., Terman D. and Volpert V.A. (1996). Global stability of traveling fronts and convergence towards stacked families of waves in monotone parabolic systems. SIAM J. Math. Anal. 27: 1261–1269 · Zbl 0861.35013 · doi:10.1137/S0036141094267522
[36] Rooney T.A. and Thomas A.P. (1993). Intracellular calcium waves generated by Ins(1,4,5)P3 dependent mechanisms. Cell Calcium 14: 674–690 · doi:10.1016/0143-4160(93)90094-M
[37] Sala F. and Hernández-Cruz A. (1990). Calcium diffusion modeling in a spherical neuron: relevance of buffering properties. Biophys. J. 57: 313–324 · doi:10.1016/S0006-3495(90)82533-9
[38] Shannon T.R., Wang F., Puglisi J., Weber C. and Bers D.M. (2004). A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys. J. 87: 3351–3371 · doi:10.1529/biophysj.104.047449
[39] Slepchenko B.M., Schaff J.C. and Choi Y.S. (2000). Numerical approach to fast reactions in reaction-diffusion systems: application to buffered calcium waves in bistable model. J. Comput. Phys. 162: 186–218 · Zbl 0953.92014 · doi:10.1006/jcph.2000.6532
[40] Smith G.D., Pearson J.E. and Keizer J. (2002). Modeling intracellular calcium waves and sparks. In: Fall, C.P., Marland, E.S., Wagner, J.M., and Tyson, J.J. (eds) Computatiional Cell Biology., pp 198–229. Springer, Berlin Heidelberg New York
[41] Sneyd J., Keizer J. and Sanderson M.J. (1995). Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J. 9: 1463–1472
[42] Sneyd J., Dale P.D. and Duffy A. (1998). Traveling waves in buffered systems: applications to calcium waves. SIAM J. Appl. Math. 58: 1178–1192 · Zbl 0916.35052 · doi:10.1137/S0036139996305074
[43] Tsai J.-C. and Sneyd J. (2005). Existence and stability of traveling waves in buffered systems. SIAM J. Appl. Math. 66: 237–265 · Zbl 1100.35049 · doi:10.1137/040618291
[44] Volpert A.I. and Volpert V.A. (1990). Applications of the rotation theory of vector fields to the study of wave solutions of parabolic equations. Trans. Moscow Math. Soc. 52: 59–108 · Zbl 0737.17007
[45] Volpert, A.I., Volpert, V.A., Volpert, V.A. Traveling-wave solutions of parabolic systems, Translations of Mathematical Monographs, vol. 140. American Mathematical Society, Providence (1994) · Zbl 0805.35143
[46] Wagner J. and Keizer J. (1994). Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 67: 447–456 · doi:10.1016/S0006-3495(94)80500-4
[47] Wagner J., Li Y.-X., Pearson J. and Keizer J. (1998). Simulation of the fertilization Ca2+ wave in Xenopus laevis eggs. Biophys. J. 75: 2088–2097 · doi:10.1016/S0006-3495(98)77651-9
[48] Xu D. and Zhao X.-Q. (2005). Bistable waves in an epidemic model. J. Dynam. Diff. Eq. 17: 219–247 · Zbl 1089.34026 · doi:10.1007/s10884-005-6294-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.