×

Complexity and the big bang. (English) Zbl 1490.83088

Summary: After a brief review of current scenarios for the resolution and/or avoidance of the Big Bang, an alternative hypothesis is put forward implying an infinite increase in complexity towards the initial singularity. This may result in an effective non-calculability which would present an obstruction to actually reaching the beginning of time. This proposal is motivated by the appearance of certain infinite-dimensional duality symmetries of indefinite Kac-Moody type in attempts to unify gravity with the fundamental matter interactions, and deeply rooted in properties of Einstein’s theory.

MSC:

83F05 Relativistic cosmology
83C45 Quantization of the gravitational field
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
83C40 Gravitational energy and conservation laws; groups of motions

References:

[1] Kolb, E. W.; Turner, M. S., The Early Universe (1990), Reading, MA: Addison-Wesley, Reading, MA · Zbl 0984.83503
[2] Mukhanov, V., Physical Foundations of Cosmology (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1095.83002
[3] Brout, R.; Englert, F.; Gunzig, E., Ann. Phys., NY, 115, 78 (1978) · doi:10.1016/0003-4916(78)90176-8
[4] Vilenkin, A., Phys. Lett. B, 117, 25 (1982) · doi:10.1016/0370-2693(82)90866-8
[5] DeWitt, B. S.; DeWitt, B. S., Phys. Rev.. Phys. Rev., 162, 1239 (1967) · doi:10.1103/physrev.162.1239
[6] Kleinschmidt, A.; Köhn, M.; Nicolai, H., Phys. Rev. D, 80 (2009) · doi:10.1103/physrevd.80.061701
[7] Kiefer, C.; Kwidzinski, N.; Piontek, D., Eur. Phys. J. C, 79, 686 (2019) · doi:10.1140/epjc/s10052-019-7193-6
[8] Hartle, J. B.; Hawking, S. W., Phys. Rev. D, 28, 2960 (1983) · Zbl 1370.83118 · doi:10.1103/physrevd.28.2960
[9] Tang, P. C L., The Ontological Status of the Cosmological Singularity (1989), Berlin: Springer, Berlin
[10] Kiefer, C., Quantum Gravity (2004), Oxford: Clarendon, Oxford · Zbl 1053.83001
[11] Bojowald, M., Phys. Rev. Lett., 86, 5227 (2001) · doi:10.1103/physrevlett.86.5227
[12] Ashtekar, A.; Pawlowski, T.; Singh, P., Phys. Rev. Lett., 96 (2006) · Zbl 1153.83417 · doi:10.1103/physrevlett.96.141301
[13] Rovelli, C.; Vidotto, F., Covariant Loop Quantum Gravity (2014), Cambridge: Cambridge University Press, Cambridge
[14] Khoury, J.; Ovrut, B. A.; Steinhardt, P. J.; Turok, N., Phys. Rev. D, 64 (2001) · doi:10.1103/physrevd.64.123522
[15] Gasperini, M.; Veneziano, G., Astropart. Phys., 1, 317 (1993) · doi:10.1016/0927-6505(93)90017-8
[16] Penrose, R. (2006)
[17] Martin, J.; Ringeval, C.; Vennin, V., Phys. Dark Universe, 5-6, 75 (2014) · doi:10.1016/j.dark.2014.01.003
[18] Schellekens, A. N.; Schellekens, A. N., Rev. Mod. Phys.. Int. J. Mod. Phys. A, 30, 1530016 (2015) · Zbl 1310.81008 · doi:10.1142/s0217751x15300161
[19] Borde, A.; Guth, A. H.; Vilenkin, A., Phys. Rev. Lett., 90 (2003) · doi:10.1103/physrevlett.90.151301
[20] Ellis, G. F R.; Maartens, R., Class. Quantum Grav., 21, 223 (2004) · Zbl 1061.83071 · doi:10.1088/0264-9381/21/1/015
[21] Belinsky, V. A.; Khalatnikov, I. M.; Lifshitz, E. M., Adv. Phys., 19, 525 (1970) · doi:10.1080/00018737000101171
[22] Damour, T.; Henneaux, M.; Nicolai, H., Class. Quantum Grav., 20, R145 (2003) · Zbl 1138.83306 · doi:10.1088/0264-9381/20/9/201
[23] Misner, C. W., Phys. Rev., 186, 1319 (1969) · Zbl 0186.28604 · doi:10.1103/physrev.186.1319
[24] Damour, T.; Henneaux, M.; Julia, B.; Nicolai, H., Phys. Lett. B, 509, 323 (2001) · Zbl 0977.83075 · doi:10.1016/s0370-2693(01)00498-1
[25] Demaret, J.; Hanquin, J-L; Henneaux, M.; Spindel, P.; Taormina, A., Phys. Lett. B, 175, 129 (1986) · doi:10.1016/0370-2693(86)90701-x
[26] Damour, T.; Henneaux, M.; Nicolai, H., Phys. Rev. Lett., 89 (2002) · Zbl 1267.83103 · doi:10.1103/physrevlett.89.221601
[27] Damour, T.; Henneaux, M., Phys. Rev. Lett., 86, 4749 (2001) · doi:10.1103/physrevlett.86.4749
[28] Greensite, J., Class. Quantum Grav., 13, 1339 (1996) · Zbl 0856.53068 · doi:10.1088/0264-9381/13/6/009
[29] Townsend, P. K.; Wohlfarth, M. N R., Class. Quantum Grav., 21, 5375 (2004) · Zbl 1192.83094 · doi:10.1088/0264-9381/21/23/006
[30] Brown, J.; Ganor, O. J.; Helfgott, C., J. High Energy Phys. (2004) · doi:10.1088/1126-6708/2004/08/063
[31] Damour, T.; Spindel, P., Phys. Rev. D, 95 (2017) · doi:10.1103/physrevd.95.126011
[32] Cremmer, E.; Julia, B.; Scherk, J., Phys. Lett. B, 76, 409 (1978) · Zbl 1156.83327 · doi:10.1016/0370-2693(78)90894-8
[33] Julia, B., Lectures in Applied Mathematics, vol 21, p 335 (1985), Providence, RI: American Mathematical Society, Providence, RI
[34] West, P., Class. Quantum Grav., 18, 4443 (2001) · Zbl 0992.83079 · doi:10.1088/0264-9381/18/21/305
[35] Kac, V. G., Infinite Dimensional Lie algebras (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0716.17022
[36] Gebert, R. W.; Nicolai, H.; Aktas, G., E_10 for beginners, Strings and Symmetries (1994), (Berlin: Springer), (Berlin
[37] Feingold, A. J.; Frenkel, I. B., Math. Ann., 263, 87 (1983) · Zbl 0489.17008 · doi:10.1007/bf01457086
[38] Nicolai, H.; Fischbacher, T.; Stanumoorthy, N.; Misra, K. C., Kac-Moody Lie algebras and Related Topics (2004), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1031.17001
[39] Kleinschmidt, A.; Nicolai, H., Int. J. Mod. Phys. D, 15, 1619 (2006) · Zbl 1152.83416 · doi:10.1142/s0218271806009005
[40] Riccioni, F.; West, P. C., J. High Energy Phys. (2007) · doi:10.1088/1126-6708/2007/07/063
[41] Bergshoeff, E. A.; Nutma, T. A.; Baetselier, I. D., J. High Energy Phys. (2007) · doi:10.1088/1126-6708/2007/09/047
[42] Damour, T.; Nicolai, H., Class. Quantum Grav., 22, 2849 (2005) · Zbl 1129.81339 · doi:10.1088/0264-9381/22/14/003
[43] Wegener, I., Complexity Theory (2005), Berlin: Springer, Berlin · Zbl 1066.68051
[44] Nielsen, M.; Chuang, J., Quantum Computation and Quantum Information (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1288.81001
[45] Perry, M. J., No future in black holes (2021)
[46] Penrose, R., Why current string theory cannot resolve the gravitational singularity issue, Strings 2021 (2021), Sao Paulo
[47] Damour, T.; Kleinschmidt, A.; Nicolai, H., Phys. Lett. B, 634, 319 (2006) · Zbl 1247.83225 · doi:10.1016/j.physletb.2006.01.015
[48] Buyl, S. d.; Henneaux, M.; Paulot, L., J. High Energy Phys. (2006) · doi:10.1088/1126-6708/2006/02/056
[49] Kleinschmidt, A.; Nicolai, H.; Viganò, A.; Gritsenko, V. A.; Spiridonov, V. P., Partition Functions and Automorphic Forms (2020), Berlin: Springer, Berlin
[50] Kleinschmidt, A.; Köhl, R.; Lautenbacher, R.; Nicolai, H. (2021)
[51] Meissner, K. A.; Nicolai, H.; Meissner, K. A.; Nicolai, H., Phys. Rev. D. Phys. Rev. Lett., 121 (2018) · doi:10.1103/physrevlett.121.091601
[52] Kleinschmidt, A.; Nicolai, H., Phys. Lett. B, 747, 251 (2015) · Zbl 1369.81118 · doi:10.1016/j.physletb.2015.06.005
[53] Meissner, K. A.; Nicolai, H., J. Cosmol. Astropart. Phys. (2019) · doi:10.1088/1475-7516/2019/09/041
[54] Meissner, K. A.; Nicolai, H.; Meissner, K. A.; Nicolai, H., Phys. Rev. D. Phys. Lett. B, 819 (2021) · Zbl 07409753 · doi:10.1016/j.physletb.2021.136468
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.