×

Infinite horizon backward stochastic Volterra integral equations and discounted control problems. (English) Zbl 1490.60197

Summary: Infinite horizon backward stochastic Volterra integral equations (BSVIEs for short) are investigated. We prove the existence and uniqueness of the adapted M-solution in a weighted \(L^2\)-space. Furthermore, we extend some important known results for finite horizon BSVIEs to the infinite horizon setting. We provide a variation of constant formula for a class of infinite horizon linear BSVIEs and prove a duality principle between a linear (forward) stochastic Volterra integral equation (SVIE for short) and an infinite horizon linear BSVIE in a weighted \(L^2\)-space. As an application, we investigate infinite horizon stochastic control problems for SVIEs with discounted cost functional. We establish both necessary and sufficient conditions for optimality by means of Pontryagin’s maximum principle, where the adjoint equation is described as an infinite horizon BSVIE. These results are applied to discounted control problems for fractional stochastic differential equations and stochastic integro-differential equations.

MSC:

60H20 Stochastic integral equations
45G05 Singular nonlinear integral equations
49K45 Optimality conditions for problems involving randomness
49N15 Duality theory (optimization)

References:

[1] E. Abi Jaber, E. Miller and H. Pham, Linear-Quadratic control for a class of stochastic Volterra equations: solvability and approximation. Preprint arXiv:1911.01900 (2020). · Zbl 1475.93116
[2] N. Agram, Dynamic risk measure for BSVIE with jumps and semimartingale issues. Stoch. Anal. Appl. 37 (2019) 361-376. · Zbl 1426.60060 · doi:10.1080/07362994.2019.1569531
[3] N. Agram and B. Øksendal, Mallivain calculus and optimal control of stochastic Volterra equations. J. Optim. Theory Appl. 167 (2015) 1070-1094. · Zbl 1335.60121 · doi:10.1007/s10957-015-0753-5
[4] J. Appleby, pth mean integrability and almost sure asymptotic stability of solutions of Itô-Volterra equations. J. Integral Equ. Appl. 15 (2003) 321-341. · Zbl 1064.34059
[5] P. Beissner and E. Rosazza Gianin, The term structure of Sharpe ratios and arbitrage-free asset pricing in continuous time. Probab. Uncertain. Quantit. Risk 6 (2021) 23-52. · Zbl 1482.91209 · doi:10.3934/puqr.2021002
[6] M.A. Berger and V.J. Mizel, Volterra equations with Itô integrals—I. J. Integral Equ. 2 (1980) 187-245. · Zbl 0442.60064
[7] S. Chen and J. Yong, A linear quadratic optimal control problem for stochastic Volterra integral equations. Control theory and related topics – in memory of professor Xunjing Li, Fudan university, China. (2007) 44-66. · Zbl 1208.60054 · doi:10.1142/9789812790552_0005
[8] T.L. Cromer, Asymptotically periodic solutions to Volterra integral equations in epidemic models. J. Math. Anal. Appl. 110 (1985) 483-494. · Zbl 0589.92017
[9] J.P.C. Dos Santos, H. Henríquez and E. Hernández, Existence results for neutral integro-differential equations with unbounded delay. J. Integr. Equ. Appl. 23 (2011) 289-330. · Zbl 1228.45019
[10] M. Fuhrman and Y. Hu, Infinite horizon BSDEs in infinite dimensions with continuous driver and applications. J. Evol. Equ. 6 (2006) 459-484. · Zbl 1116.60032
[11] M. Fuhrman and G. Tessitore Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces. Ann. Probab. 32 (2004) 607-660. · Zbl 1046.60061
[12] J. Gatheral, T. Jaisson, and M. Rosenbaum, Volatility is rough. Quant. Finance 18 (2018) 933-949. · Zbl 1400.91590 · doi:10.1080/14697688.2017.1393551
[13] Y. Hamaguchi, Extended backward stochastic Volterra integral equations and their applications to time-inconsistent stochastic recursive control problems. Math. Control Relat. Fields 11 (2021) 197-242. · Zbl 1478.93732 · doi:10.3934/mcrf.2020043
[14] Y. Hamaguchi, On the maximum principle for optimal control problems of stochastic Volterra integral equations with delay. Preprint: arXiv:2109.06092 (2021). · Zbl 1478.93732
[15] C. Hernández and D. Possamaï, Me, myself and I: a general theory of non-Markovian time-inconsistent stochastic control for sophisticated agents. Preprint: arXiv:2002.12572 (2021).
[16] H. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). · Zbl 0998.26002 · doi:10.1142/3779
[17] Y. Hu and B. Øksendal, Linear Volterra backward stochastic integral equations. Stochastic Process. Appl. 129 (2019) 626-633. · Zbl 1405.60074
[18] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland, Amsterdam (2006). · Zbl 1092.45003
[19] E. Kromer and L. Overbeck, Differentiability of BSVIEs and dynamic capital allocations. Int. J. Theor. Appl. Finance 20 (2017) 1-26. · Zbl 1415.91266
[20] J. Lin, Adapted solution of a backward stochastic nonlinear Volterra integral equation. Stoch. Anal. Appl. 20 (2002) 165-183. · Zbl 0999.60052
[21] P. Lin and J. Yong, Controlled singular Volterra integral equations and Pontryagin maximum principle. SIAM J. Control Optim. 58 (2020) 136-164. · Zbl 1444.45003 · doi:10.1137/19M124602X
[22] J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Math. 1702, Springer-Verlag, New York (1999). · Zbl 0927.60004
[23] X. Mao and M. Riedle, Mean square stability of stochastic Volterra integro-differential equations. Syst. Control Lett. 55 (2006) 459-465. · Zbl 1129.34332
[24] B. Maslowski and P. Veverka, Sufficient stochastic maximum principle for discounted control problem. Appl. Math. Optim. 70 (2014) 225-252. · Zbl 1303.93189
[25] C. Orrieri and P. Veverka, Necessary stochastic maximum principle for dissipative systems on infinite time horizon. ESAIM: COCV 23 (2017) 337-371. · Zbl 1354.93178 · doi:10.1051/cocv/2015054
[26] G. Pang and E. Pardoux, Functional limit theorems for non-Markovian epidemic models. Preprint: arXiv:2003.03249 (2021).
[27] E. Pardoux, BSDEs weak convergence and homogenizations of semilinear PDEs, in Nonlinear Analysis Differential Equations and Control, edited by F.H. Clark, R.J. Stern (1999) 503-509. · Zbl 0959.60049
[28] S. Peng and Y. Shi, Infinite horizon forward-backward stochastic differential equations. Stochastic Process. Appl. 85 (2000) 75-92. · Zbl 0997.60062 · doi:10.1016/S0304-4149(99)00066-6
[29] R. Sakthivel, J.J. Nieto and N.I. Mahmudov, Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay. Taiwan J. Math. 14 (2010) 1777-1797. · Zbl 1220.93011 · doi:10.11650/twjm/1500406016
[30] Y. Shi, T. Wang and J. Yong, Mean-field backward stochastic Volterra integral equations. Discrete Contin. Dyn. Syst. 18 (2013) 1929-1967. · Zbl 1277.60111
[31] Y. Shi, T. Wang and J. Yong, Optimal control problems of forward-backward stochastic Volterra integral equations. Math. Control Relat. Fields 5 (2015) 613-649. · Zbl 1337.49044 · doi:10.3934/mcrf.2015.5.613
[32] H. Wang, J. Sun and J. Yong, Recursive utility processes, dynamic risk measures and quadratic backward stochastic Volterra integral equations. Appl. Math. Optim. 84 (2021) 145-190. · Zbl 1470.60144 · doi:10.1007/s00245-019-09641-7
[33] H. Wang and J. Yong, Time-inconsistent stochastic optimal control problems and backward stochastic Volterra integral equations. ESAIM: COCV 27 (2021). · Zbl 1467.93339
[34] H. Wang, J. Yong and J. Zhang, Path dependent Feynman-Kac formula for forward backward stochastic Volterra integral equations. To appear Ann. Inst. Henri Poincaré Probab. Stat. Preprint arXiv:2004.05825 (2021).
[35] T. Wang, Linear quadratic control problems of stochastic Volterra integral equations. ESAIM: COCV 24 (2018) 1849-1879. · Zbl 1415.93296
[36] T. Wang, Necessary conditions of Pontraygin’s type for general controlled stochastic Volterra integral equations. ESAIM: COCV 26 (2020) 16. · Zbl 1441.93349 · doi:10.1051/cocv/2020001
[37] T. Wang and J. Yong, Comparison theorems for some backward stochastic Volterra integral equations. Stochastic Process. Appl. 125 (2015) 1756-1798. · Zbl 1310.60102
[38] T. Wangand H. Zhang, Optimal control problems of forward-backward stochastic Volterra integral equations with closed control regions. SIAM J. Control Optim. 55 (2017) 2574-2602. · Zbl 1368.93791
[39] Y. Wang, J. Xu and P.E. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative. Nonlinear Anal. 135 (2016) 205-222. · Zbl 1337.26021 · doi:10.1016/j.na.2016.01.020
[40] Z. Wu and F. Zhang, Maximum principle for stochastic recursive optimal control problems involving impulse controls. Abstr. Appl. Anal. 32 (2012 1-16. · Zbl 1246.93128
[41] J. Yin, On solutions of a class of infinite horizon FBSDE’s. Stat. Probab. Lett. 78 (2008) 2412-2419. · Zbl 1151.60031
[42] J. Yong, Backward stochastic Volterra integral equations and some related problems. Stoch. Anal. Appl. 116 (2006) 779-795. · Zbl 1093.60042
[43] J. Yong, Continuous-time dynamic risk measures by backward stochastic Volterra integral equations. Appl. Anal. 86 (2007) 1429-1442. · Zbl 1134.91486
[44] J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equations. Probab. Theory Related Fields 142 (2008) 2-77. · Zbl 1148.60039
[45] J. Zhang, Backward Stochastic Differential Equations; From Linear to Fully Nonlinear Theory. Springer (2017). · Zbl 1390.60004 · doi:10.1007/978-1-4939-7256-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.