×

Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces. (English) Zbl 1046.60061

By solving infinite-dimensional forward and backward stochastic differential equations, solutions to a class of semilinear elliptic differential equations on a Hilbert space are studied. The main results are applied to the optimal control for a general nonlinear control system on an infinite time horizon.

MSC:

60H30 Applications of stochastic analysis (to PDEs, etc.)
35R15 PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Ambrosetti, A. and Prodi, G. (1995). A Primer of Nonlinear Analysis . Cambridge Univ. Press. · Zbl 0818.47059
[2] Buckdahn, R. and Peng, S. (1999). Stationary backward stochastic differential equations and associated partial differential equations. Probab. Theory Related Fields 115 383–399. · Zbl 0948.60060 · doi:10.1007/s004400050242
[3] Buckdahn, R. and Răşcanu, A. (2002). On the existence of stochastic optimal control of distributed state system. Nonlinear Anal. 52 1153–1184. · Zbl 1030.93057 · doi:10.1016/S0362-546X(02)00158-X
[4] Cerrai, S. (2001). Second Order PDE’s in Finite and Infinite Dimensions. A Probabilistic Approach. Lecture Notes in Math. 1762 . Springer, New York. · Zbl 0983.60004
[5] Daleckij, Yu. L. and Fomin, S. V. (1991). Measures and Differential Equations in Infinite-Dimensional Space . Kluwer, Dordrecht. · Zbl 0753.46027
[6] Da Prato, G., Gołdys, B. and Zabczyk, J. (1997). Ornstein–Uhlenbeck semigroups in open sets of Hilbert spaces. C. R. Acad. Sci. Paris Ser. I Math. 325 433–438. · Zbl 0895.60083 · doi:10.1016/S0764-4442(97)85631-5
[7] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44 . Cambridge Univ. Press. · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[8] Da Prato, G. and Zabczyk, J. (1996). Ergodicity for Infinite-Dimensional Systems . Cambridge Univ. Press. · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[9] Da Prato, G. and Zabczyk, J. (2002). Second Order Partial Differential Equations in Hilbert Spaces . Cambridge Univ. Press. · Zbl 1012.35001
[10] Darling, R. W. R. and Pardoux, E. (1997). Backwards SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25 1135–1159. · Zbl 0895.60067 · doi:10.1214/aop/1024404508
[11] Fleming, W. H. and Soner, H. M. (1993). Controlled Markov Processes and Viscosity Solutions . Springer, New York. · Zbl 0773.60070
[12] Fuhrman, M. and Tessitore, G. (2002). Nonlinear Kolmogorov equations in infinite dimensional spaces: The backward stochastic differential equations approach and applications to optimal control. Ann. Probab. 30 1397–1465. · Zbl 1017.60076 · doi:10.1214/aop/1029867132
[13] Fuhrman, M. and Tessitore, G. (2002). The Bismut–Elworthy formula for backward SDE’s and applications to nonlinear Kolmogorov equations and control in infinite dimensional spaces. Stochastics Stochastics Rep. 74 429–464. · Zbl 1013.60049 · doi:10.1080/104S1120290024856
[14] Gozzi, F. and Rouy, E. (1996). Regular solutions of second-order stationary Hamilton–Jacobi equations. J. Differential Equations 130 201–234. · Zbl 0864.34058 · doi:10.1006/jdeq.1996.0139
[15] Gozzi, F., Rouy, E. and Świȩch, A. (2000). Second order Hamilton–Jacobi equations in Hilbert spaces and stochastic boundary control. SIAM J. Control Optim. 38 400–430. · Zbl 0994.49019 · doi:10.1137/S0363012997324909
[16] Grorud, A. and Pardoux, E. (1992). Intégrales Hilbertiennes anticipantes par rapport à un processus de Wiener cylindrique et calcul stochastique associé. Appl. Math. Optim. 25 31–49. · Zbl 0754.60051 · doi:10.1007/BF01184155
[17] Gross, L. (1967). Potential theory on Hilbert spaces. J. Funct. Anal. 1 123–181. · Zbl 0165.16403 · doi:10.1016/0022-1236(67)90030-4
[18] Lions, P. L. (1989). Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. III. Uniqueness of viscosity solutions for general second-order equations. J. Funct. Anal. 86 1–18. · Zbl 0757.93084 · doi:10.1016/0022-1236(89)90062-1
[19] Lions, P. L. and Souganidis, P. E. (1993). Fully nonlinear second-order degenerate elliptic equations with large zeroth-order coefficients. Indiana Univ. Math. J. 42 1525–1543. · Zbl 0791.35040 · doi:10.1512/iumj.1993.42.42069
[20] Nualart, D. (1995). The Malliavin Calculus and Related Topics. Probability and Its Applications . Springer, Berlin. · Zbl 0837.60050
[21] Nualart, D. and Pardoux, E. (1988). Stochastic calculus with anticipative integrands. Probab. Theory Related Fields 78 535–581. · Zbl 0629.60061 · doi:10.1007/BF00353876
[22] Pardoux, E. (1975). Equations aux dérivées partielles stochastiques non linéaires monotones. Thèse, Univ. Paris Sud-Orsay. · Zbl 0363.60041
[23] Pardoux, E. (1998). Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. In Stochastic Analysis and Related Topics (L. Decreusefond, J. Gjerde, B. Øksendal, A. S. Üstünel, eds.). 79–127. Birkhäuser, Boston. · Zbl 0893.60036
[24] Pardoux, E. and Peng, S. (1992). Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic Partial Differential Equations and Their Applications . Lecture Notes in Control Inform. Sci. 176 200–217. Springer, Berlin. · Zbl 0766.60079 · doi:10.1007/BFb0007334
[25] Pardoux, E. and Răşcanu, A. (1998). Backward stochastic differential equations with subdifferential operators and related variational inequalities. Stochastic Process Appl. 76 191–215. · Zbl 0932.60070 · doi:10.1016/S0304-4149(98)00030-1
[26] Pardoux, E. and Răşcanu, A. (1999). Backward stochastic variational inequalities. Stochastics Stochastics Rep. 67 159–167. · Zbl 0948.60049 · doi:10.1080/17442509908834208
[27] Peng, S. (1991). Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics Stochastics Rep. 37 61–74. · Zbl 0739.60060
[28] Świȩch, A. (1994). “Unbounded” second order partial differential equations in infinite-dimensional Hilbert spaces. Comm. Partial Differential Equations 19 1999–2036. · Zbl 0812.35154
[29] Świȩch, A. (1993). Viscosity solutions of fully nonlinear partial differential equations with “unbounded” terms in infinite dimensions. Ph.D. dissertation, Univ. California, Santa Barbara.
[30] Talarczyk, A. (2000). Dirichlet problem for parabolic equations on Hilbert spaces. Studia Math. 141 109–142. · Zbl 0977.35057
[31] Zabczyk, J. (1999). Parabolic equations on Hilbert spaces. Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Math. 1715 117–213. Springer, Berlin. · Zbl 0942.35167 · doi:10.1007/BFb0092419
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.