×

Floer theory of higher rank quiver \(3\)-folds. (English) Zbl 1490.53101

The author studies threefolds \(Y\) fibred by \(A_m\)-surfaces over a curve \(S\) of positive genus. An ideal triangulation of \(S\) defines, for each rank \(m\), a quiver \(Q(\Delta_m)\), hence a \(CY_3\)-category \(C(W)\) for any potential \(W\) on \(Q(\Delta_m)\). The author shows that for \(\omega\) in an open subset of the Kähler cone, a subcategory of a sign-twisted Fukaya category of \((Y,\omega)\) is quasi-isomorphic to \((C,W_{[\omega]})\) for a certain generic potential \(W_{[\omega]}\). This partially establishes a conjecture of Goncharov. A. B. Goncharov conjectured in [Prog. Math. 324, 31–97 (2017; Zbl 1392.13007)] that the \(CY_3\)-category associated to \(Q(\Delta_m)\) and the ‘canonical’ potential \(W = W(\Delta_m)\) on the underlying bipartite graph should be realised as a subcategory of a Fukaya category. Goncharov’s conjecture, stemming from general expectations around ‘categorifications’ of cluster varieties, was further elaborated by E. Abrikosov [“Potentials for moduli spaces of \(A_m\)-local systems on surfaces”, Preprint, arXiv:1803.06353]; the result in the paper under review proves the formulation given there. In addition, it gives a symplectic geometric viewpoint on results of D. Gaiotto et al. [Ann. Henri Poincaré 15, No. 1, 61–141 (2014; Zbl 1301.81262)] on ‘theories of class \(\mathcal{S}\)’.

MSC:

53D40 Symplectic aspects of Floer homology and cohomology
53D12 Lagrangian submanifolds; Maslov index
81T60 Supersymmetric field theories in quantum mechanics
16G20 Representations of quivers and partially ordered sets
13F60 Cluster algebras
32Q28 Stein manifolds
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
32B25 Triangulation and topological properties of semi-analytic and subanalytic sets, and related questions

References:

[1] Abouzaid, M.; Auroux, D.; Katzarkov, L., Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces, Publ. Math. Inst. Hautes Études Sci., 123, 199-282 (2016) · Zbl 1368.14056 · doi:10.1007/s10240-016-0081-9
[2] Abrikosov, E.: Potentials for moduli spaces of \(A_m\)-local systems on surfaces. Preprint arXiv:1803.06353 (2018)
[3] A’Campo, N.: Le groupe de monodromie du déploiement des singularités isolées de courbes planes. I. Math. Ann. 213, 1-32 (1975) · Zbl 0316.14011
[4] Auroux, D.; Muñoz, V.; Presas, F., Lagrangian submanifolds and Lefschetz pencils, J. Symplectic Geom., 3, 2, 171-219 (2005) · Zbl 1093.53085 · doi:10.4310/JSG.2005.v3.n2.a2
[5] Abouzaid, M.; Smith, I., Khovanov homology from Floer cohomology, J. Am. Math. Soc., 32, 1, 1-79 (2019) · Zbl 1401.57005 · doi:10.1090/jams/902
[6] Biran, P.; Cornea, O., Cone-decompositions of Lagrangian cobordisms in Lefschetz fibrations, Sel. Math. (N.S.), 23, 4, 2635-2704 (2017) · Zbl 1379.53094 · doi:10.1007/s00029-017-0318-6
[7] Brieskorn, E.; Saito, K., Artin-Gruppen und Coxeter-Gruppen, Invent. Math., 17, 245-271 (1972) · Zbl 0243.20037 · doi:10.1007/BF01406235
[8] Bridgeland, T.; Smith, I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci., 121, 155-278 (2015) · Zbl 1328.14025 · doi:10.1007/s10240-014-0066-5
[9] Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds. American Mathematical Society Colloquium Publications, vol. 59. American Mathematical Society, Providence (2012) · Zbl 1262.32026
[10] Cohen, DC; Suciu, AI, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helv., 72, 2, 285-315 (1997) · Zbl 0959.52018 · doi:10.1007/s000140050017
[11] Diaconescu, DE; Donagi, R.; Pantev, T., Intermediate Jacobians and \(ADE\) Hitchin systems, Math. Res. Lett., 14, 5, 745-756 (2007) · Zbl 1135.32300 · doi:10.4310/MRL.2007.v14.n5.a3
[12] Dung, NV, Braid monodromy of complex line arrangements, Kodai Math. J., 22, 1, 46-55 (1999) · Zbl 0954.14014 · doi:10.2996/kmj/1138043987
[13] Derksen, H.; Weyman, J.; Zelevinsky, A., Quivers with potentials and their representations. I. Mutations., Sel. Math. (N.S.), 14, 1, 59-119 (2008) · Zbl 1204.16008 · doi:10.1007/s00029-008-0057-9
[14] Franco, S.; Hanany, A.; Vegh, D.; Wecht, B.; Kennaway, KD, Brane dimers and quiver gauge theories, J. High Energy Phys., 2006, 1, 096, 48 (2006)
[15] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part I. AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society, Providence, RI; International Press, Somerville, MA (2009) · Zbl 1181.53003
[16] Fukaya, K., Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto J. Math., 50, 3, 521-590 (2010) · Zbl 1205.53090 · doi:10.1215/0023608X-2010-004
[17] Ginzbug, V.: Calabi-Yau algebras. Preprint arXiv:math/0612139 (2006)
[18] Geiß, C.; Labardini-Fragoso, D.; Schröer, J., The representation type of Jacobian algebras, Adv. Math., 290, 364-452 (2016) · Zbl 1380.16013 · doi:10.1016/j.aim.2015.09.038
[19] Gaiotto, D.; Moore, GW; Neitzke, A., Spectral networks, Ann. Henri Poincaré, 14, 7, 1643-1731 (2013) · Zbl 1288.81132 · doi:10.1007/s00023-013-0239-7
[20] Gaiotto, D.; Moore, GW; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math., 234, 239-403 (2013) · Zbl 1358.81150 · doi:10.1016/j.aim.2012.09.027
[21] Gaiotto, D.; Moore, GW; Neitzke, A., Spectral networks and snakes, Ann. Henri Poincaré, 15, 1, 61-141 (2014) · Zbl 1301.81262 · doi:10.1007/s00023-013-0238-8
[22] Goncharov, A.B.: Ideal webs, moduli spaces of local systems, and 3d Calabi-Yau categories. Algebra, geometry, and physics in the 21st century, Progr. Math., vol. 324, Birkhäuser/Springer, Cham, pp. 31-97 (2017) · Zbl 1392.13007
[23] Ganatra, S., Pomerleano, D.: A log PSS morphism with applications to Lagrangian embeddings. Preprint arXiv:1611.06849 (2016) · Zbl 1469.53126
[24] Hind, R., Lagrangian unknottedness in Stein surfaces, Asian J. Math., 16, 1, 1-36 (2012) · Zbl 1262.53073 · doi:10.4310/AJM.2012.v16.n1.a1
[25] Hollands, L.; Neitzke, A., Spectral networks and Fenchel-Nielsen coordinates, Lett. Math. Phys., 106, 6, 811-877 (2016) · Zbl 1345.32020 · doi:10.1007/s11005-016-0842-x
[26] Khovanov, M.; Seidel, P., Quivers, Floer cohomology, and braid group actions, J. Am. Math. Soc., 15, 1, 203-271 (2002) · Zbl 1035.53122 · doi:10.1090/S0894-0347-01-00374-5
[27] Kontsevich, M., Soibelman, Y.: Notes on \(A_\infty \)-algebras, \(A_\infty \)-categories and non-commutative geometry. In: Homological Mirror Symmetry. Lecture Notes in Phys., vol. 757, pp. 153-219. Springer, Berlin (2009) · Zbl 1202.81120
[28] Keller, B.; Yang, D., Derived equivalences from mutations of quivers with potential, Adv. Math., 226, 3, 2118-2168 (2011) · Zbl 1272.13021 · doi:10.1016/j.aim.2010.09.019
[29] Looijenga, E., Artin groups and the fundamental groups of some moduli spaces, J. Topol., 1, 1, 187-216 (2008) · Zbl 1172.14022 · doi:10.1112/jtopol/jtm009
[30] Loi, A.; Piergallini, R., Compact Stein surfaces with boundary as branched covers of \(B^4\), Invent. Math., 143, 2, 325-348 (2001) · Zbl 0983.32027 · doi:10.1007/s002220000106
[31] Mainiero, T.: Algebraicity and asymptotics: an explosion of BPS indices from algebraic generating series. Preprint arXiv:1606.02693 (2016)
[32] Orevkov, SY, Realizability of a braid monodromy by an algebraic function in a disk, C. R. Acad. Sci. Paris Sér I. Math., 326, 7, 867-871 (1998) · Zbl 0922.32020 · doi:10.1016/S0764-4442(98)80052-9
[33] Vélez, AQ; Boer, A., Noncommutative resolutions of \(ADE\) fibered Calabi-Yau threefolds, Commun. Math. Phys., 297, 3, 597-619 (2010) · Zbl 1198.14039 · doi:10.1007/s00220-010-1052-5
[34] Reineke, M., Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants, Compos. Math., 147, 3, 943-964 (2011) · Zbl 1266.16013 · doi:10.1112/S0010437X1000521X
[35] Seidel, P.: Fukaya Categories and Picard-Lefschetz Theory. Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich (2008) · Zbl 1159.53001
[36] Sheridan, N.: Versality in mirror symmetry. Current Developments in Mathematics (to appear). arXiv:1804.00616 · Zbl 1427.14083
[37] Smith, I., Quiver algebras as Fukaya categories, Geom. Topol., 19, 5, 2557-2617 (2015) · Zbl 1328.53109 · doi:10.2140/gt.2015.19.2557
[38] Shende, V., Treumann, D., Williams, H.: On the combinatorics of exact Lagrangian surfaces. Preprint, arXiv:1603.07449
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.