×

Normalized solutions of nonlinear Schrödinger equations with potentials and non-autonomous nonlinearities. (English) Zbl 1490.35461

Summary: We study the existence and multiplicity of normalized solutions to the following Schrödinger equations with potentials and non-autonomous nonlinearities: \[ \begin{cases} -\Delta u+V(x)u+\lambda u=f(x,u) \quad \text{in }\mathbb{R}^N, \\ \int_{\mathbb{R}^N} |u(x)|^2\mathrm{d}x=a, \quad u\in H^1(\mathbb{R}^N), \end{cases} \] where \(V(x)\le \lim_{|x|\rightarrow \infty} V(x){:=}V_{\infty}\in (-\infty,+\infty]\) and \(f(x, s)\) satisfies Berestycki-Lions type conditions with mass sub-critical growth. In the case \(V_{\infty}=+\infty \), we prove that for all \(a>0\), the equation has a ground state solution, and if additionally \(f\) is odd, the equation has infinitely many normalized solutions with increasing energy. While in the case \(V_{\infty}<+\infty \), we prove that there exists \(a_0\ge 0\) such that the ground state energy can be attained when \(a>a_0\), but not when \(0<a<a_0\). To this end, We develop robust arguments to show the conditional strict subadditivity of the ground state energy with respect to \(a\). We also investigate the multiplicity of normalized radial solutions by index theory in this case. These results can be extended to other types of Schrödinger equations.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J50 Variational methods for elliptic systems
35B35 Stability in context of PDEs
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Full Text: DOI

References:

[1] Bao, W-Z; Cai, Y-Y, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6, 1-135 (2013) · Zbl 1266.82009 · doi:10.3934/krm.2013.6.1
[2] Bartsch, T., Topological Methods for Variational Problems with Symmetries (1993), Berlin: Springer, Berlin · Zbl 0789.58001 · doi:10.1007/BFb0073859
[3] Bartsch, T.; Soave, N., A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 272, 4998-5037 (2017) · Zbl 1485.35173 · doi:10.1016/j.jfa.2017.01.025
[4] Bartsch, T.; Wang, Z-Q, Existence and multiplicity results for some superlinear elliptic problems on \(\mathbb{R}^N\), Commun. Partial Differ. Equ., 20, 1725-1741 (1995) · Zbl 0837.35043 · doi:10.1080/03605309508821149
[5] Bartsch, T.; Willem, M., Infinitely many radial solutions of a semilinear elliptic problem on \(\mathbb{R}^N\), Arch. Rational Mech. Anal., 124, 261-276 (1993) · Zbl 0790.35020 · doi:10.1007/BF00953069
[6] Bartsch, T.; Zhong, X-X; Zou, W-M, Normalized solutions for a coupled Schrödinger system, Math. Ann. (2020) · Zbl 1479.35762 · doi:10.1007/s00208-020-02000-w
[7] Berestycki, H.; Lions, P-L, Nonlinear scalar field equations, I existence of a ground state, Arch. Rational Mech. Anal., 82, 313-345 (1983) · Zbl 0533.35029 · doi:10.1007/BF00250555
[8] Berestycki, H.; Lions, P-L, Nonlinear scalar field equations, II existence of infinitely many solutions, Arch. Rational Mech. Anal., 82, 347-375 (1983) · Zbl 0556.35046 · doi:10.1007/BF00250556
[9] Cazenave, T., Semilinear Schrödinger Equations (2003), Providence: American Mathematical Society, Providence · Zbl 1055.35003 · doi:10.1090/cln/010
[10] Chen, S-T; Tang, X-H, Normalized solutions for nonautonomous Schrödinger equations on a suitable manifold, J. Geom. Anal., 30, 1637-1660 (2020) · Zbl 1437.35186 · doi:10.1007/s12220-019-00274-4
[11] Ding, Y-H; Szulkin, A., Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differ. Equ., 29, 397-419 (2007) · Zbl 1119.35082 · doi:10.1007/s00526-006-0071-8
[12] Egorov, Y-V; Kondratiev, V-A, On Spectral Theory of Elliptic Operators (1996), Basel: Birkhäuser Verlag, Basel · Zbl 0855.35001 · doi:10.1007/978-3-0348-9029-8
[13] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 397-408 (1986) · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[14] Hirata, J.; Tanaka, K., Nonlinear scalar field equations with \(L^2\) constraint: mountain pass and symmetric mountain pass approaches, Adv. Nonlinear Stud., 19, 263-290 (2019) · Zbl 1421.35152 · doi:10.1515/ans-2018-2039
[15] Ikoma, N.; Miyamoto, Y., Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities, Calc. Var. Partial Differ. Equ., 59, 1-20 (2020) · Zbl 1434.35179 · doi:10.1007/s00526-020-1703-0
[16] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28, 1633-1659 (1997) · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[17] Jeanjean, L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on \(\mathbb{R}^N\), Proc. R. Soc. Edinburgh Sect. A, 129, 787-809 (1999) · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[18] Jeanjean, L.; Lu, S-S, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity, 32, 4942-4966 (2019) · Zbl 1429.35101 · doi:10.1088/1361-6544/ab435e
[19] Rabinowitz, PH, Minimax Methods in Critical Point Theory with Applications to Differential equations (1986), Providence: American Mathematical Society, Providence · Zbl 0609.58002 · doi:10.1090/cbms/065
[20] Rabinowitz, PH, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 270-291 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[21] Shibata, M., Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscripta Math., 143, 221-237 (2014) · Zbl 1290.35252 · doi:10.1007/s00229-013-0627-9
[22] Strauss, W-A, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55, 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[23] Willem, M.; Zou, W-M, On a Schrödinger equation with periodic potential and spectrum point zero, Indiana Univ. Math. J., 52, 109-132 (2003) · Zbl 1030.35068 · doi:10.1512/iumj.2003.52.2273
[24] Zhang, J., Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51, 498-503 (2000) · Zbl 0985.35085 · doi:10.1007/PL00001512
[25] Zhong, X.-X., Zou, W.-M.: Ground state normalized solution to the Schrödinger equation with potential. to appear
[26] Zhu, X-P; Cao, D-M, The concentration-compactness principle in nonlinear elliptic equations, Acta Math. Sci. (English Ed.), 9, 307-328 (1989) · Zbl 0702.35095 · doi:10.1016/S0252-9602(18)30356-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.