×

Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. (English) Zbl 1290.35252

The paper deals with the existence and orbital stability for standing waves of nonlinear Schrödinger equations \[ iu_t+\Delta u+f(u)=0 \] where \((t,x)\in \mathbb{R}\times \mathbb{R}^N\) and \(N\geq 1\). The corresponding minimizing problem on existence and the non-existence of global minimizers of \[ E_{\alpha}=\inf _{u\in M_{\alpha}}I[u], \] where \[ M_{\alpha}=\{ u\in H^1(\mathbb{R}^N); \|u\|^2_{L^2(\mathbb{R}^N)}=\alpha \}, \]
\[ I[u]=\frac{1}{2}\int_{R^N}|\nabla u|^2 dx-\int_{\mathbb{R}^N}F(|u|) dx \] and \[ F(s)=\int_0^s f(\tau)d \tau \] is studied. It is proved that there exists \(\alpha_0\geq 0\) such that there exists a global minimizer if \(\alpha >\alpha_0\) and there exists no global minimizer if \(\alpha <\alpha_0\). Conditions for \(\alpha_0=0\) or \(\alpha_0>0\) are derived and the existence results with respect to \(E_{\alpha_0}\) are obtained also.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J20 Variational methods for second-order elliptic equations
35B35 Stability in context of PDEs
Full Text: DOI

References:

[1] Bellazzini J., Siciliano G.: Scaling properties of functionals and existence of constrained minimizers. J. Funct. Anal. 261(9), 2486-2507 (2011) · Zbl 1357.49053 · doi:10.1016/j.jfa.2011.06.014
[2] Bellazzini J., Siciliano G.: Stable standing waves for a class of nonlinear Schrödinger-poisson equations. Z. Angew. Math. Phys. 62(2), 267-280 (2011) · Zbl 1339.35280 · doi:10.1007/s00033-010-0092-1
[3] Brézis H., Lieb E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486-490 (1983) · Zbl 0526.46037 · doi:10.2307/2044999
[4] Cazenave T., Lions P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549-561 (1982) · Zbl 0513.35007 · doi:10.1007/BF01403504
[5] Cazenave T.: Semilinear Schrödinger Equations, volume 10 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York (2003) · Zbl 1055.35003
[6] Cid C., Felmer P.: Orbital stability and standing waves for the nonlinear Schrödinger equation with potential. Rev. Math. Phys. 13(12), 1529-1546 (2001) · Zbl 1038.35112 · doi:10.1142/S0129055X01001095
[7] Colin M., Jeanjean L., Squassina M.: Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity 23(6), 1353-1385 (2010) · Zbl 1192.35163 · doi:10.1088/0951-7715/23/6/006
[8] Jeanjean, L., Luo, T.: Sharp nonexistence results of prescribed L2-norm solutions for some class of Schrödinger-poisson and quasi-linear equations. Zeitschrift für angewandte Mathematik und Physik, pp. 1-18 (2012) · Zbl 0526.46037
[9] Jeanjean L., Squassina M.: An approach to minimization under a constraint: the added mass technique. Calc. Var. Partial Differ. Equ. 41(3-4), 511-534 (2011) · Zbl 1223.49021 · doi:10.1007/s00526-010-0374-7
[10] Lions P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223-283 (1984) · Zbl 0704.49004
[11] Stuart C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. Lond. Math. Soc. (3) 45(1), 169-192 (1982) · Zbl 0505.35010 · doi:10.1112/plms/s3-45.1.169
[12] Stuart C.A.: Bifurcation from the essential spectrum for some noncompact nonlinearities. Math. Methods Appl. Sci. 11(4), 525-542 (1989) · Zbl 0678.58013 · doi:10.1002/mma.1670110408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.