×

\(\ell\)-modular zeta functions. (Fonctions zêta \(\ell\)-modulaires.) (French. English summary) Zbl 1282.11157

Let \(D\) be a division algebra over a non-archimedean local field with residual characteristic \(p\). The author generalizes the theory of zeta functions of \(\mathrm{GL}_m(D)\) of Godement and Jacquet for complex representations to the case of \(\overline{\mathbb F}_{\ell}\)-representations, \(\ell \neq p\). He shows that the proof by Godement and Jacquet remains valid for any algebraically closed field of characteristic 0. The result for \(\overline{\mathbb F}_{\ell}\)-representations is proved using reduction modulo \(\ell\) from \(\overline{\mathbb Q}_{\ell}\)-representations supplied with a \(\overline{\mathbb Z}_{\ell}\)-structure.
The \(L\)-function is explicitly computed for certain representations (for all representations in case \(\ell\) does not divide the number of elements of \(\mathrm{GL}_m(k_D)\), \(k_D\) being the residue field of \(D\)).

MSC:

11S40 Zeta functions and \(L\)-functions
22E50 Representations of Lie and linear algebraic groups over local fields

Citations:

Zbl 0244.12011

References:

[1] A. I. Badulescu, Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations , with an appendix by Neven Grbac, Invent. Math. 172 (2008), 383-438. · Zbl 1158.22018 · doi:10.1007/s00222-007-0104-8
[2] C. J. Bushnell, G. Henniart, The Local Langlands Conjecture for \(\mathrm{GL}(2)\) , Grundlehren Math. Wiss. 335 , Springer, Berlin, 2006. · Zbl 1100.11041
[3] J.-F. Dat, \(\nu\)-tempered representations of \(p\)-adic groups, I: \(\ell\)-adic case , Duke Math. J., 126 (2005), 397-469. · Zbl 1063.22017 · doi:10.1215/S0012-7094-04-12631-4
[4] R. Godement, H. Jacquet, Zeta Functions of Simple Algebras , Lectures Notes in Math. 260 , Springer, Berlin, 1972. · Zbl 0244.12011 · doi:10.1007/BFb0070263
[5] M. Harris, R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties , with an appendix by V. G. Berkovich, Ann. of Math. Stud. 151 , Princeton Univ. Press, Princeton, 2001. · Zbl 1036.11027
[6] G. Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs \(\epsilon\) de paires , Invent. Math. 113 (1993), 339-350. · Zbl 0810.11069 · doi:10.1007/BF01244309
[7] G. Henniart, Une preuve simple des conjectures de Langlands pour \(\mathrm{GL}_{n}\) sur un corps \(p\)-adique , Invent. Math. 139 (2000), 439-455. · Zbl 1048.11092 · doi:10.1007/s002220050012
[8] H. Jacquet, “Zeta functions of simple algebras (local theory)” in Harmonic Analysis on Homogeneous Spaces (Williamstown, Mass., 1972) , Amer. Math. Soc., Providence, 1973, 381-386. · Zbl 0296.12006
[9] H. Jacquet, “Principal \(L\)-functions of the linear group” in Automorphic Forms, Representations and \(L\)-functions (Corvallis, Ore., 1977) , Proc. Sympos. Pure Math. 33 , Amer. Math. Soc., Providence, 1979. · Zbl 0413.12007
[10] H. Jacquet, R. P. Langlands, Automorphic Forms on \(\mathrm{GL}(2)\) , Lect. Notes in Math. 114 , Springer, Berlin, 1970. · Zbl 0236.12010
[11] S. Kudla, “Tate’s thesis” in An Introduction to the Langlands Program (Jerusalem, 2001) , Birkhäuser, Boston, 2004, 109-131. · Zbl 1111.11315
[12] A. Mínguez, Correspondance de Howe explicite : paires duales de type II , Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 717-741. · Zbl 1220.22014
[13] A. Mínguez, Correspondance de Howe \(\ell\)-modulaire: paires duales de type II , thèse, Université de Orsay, 2006, (accessed 13 August, 2012).
[14] A. Mínguez and V. Sécherre, Représentations lisses modulo \(\ell\) de \(\mathrm{GL}_{m}(\mathrm{D})\) , preprint, (accessed 13 August, 2012).
[15] A. Mínguez, V. Sécherre, Représentations banales de \(\mathrm{GL}_{m}(\mathrm{D})\) , preprint, to appear in Compos. Math., (accessed 13 August, 2012).
[16] A. Mínguez, V. Sécherre, Types modulo \(\ell\) pour les formes intérieures de \(\mathrm{GL}_{n}\) sur un corps local non archimédien , preprint, (accessed 13 August, 2012).
[17] C. Moeglin, M. F. Vignéras, and J. L. Waldspurger, Correspondance de Howe sur un corps \(p\)-adique , Lecture Notes in Math. 1291 , Springer, Berlin, 1987.
[18] J. Tate, “Fourier analysis in number fields, and Hecke’s zeta functions” in Algebraic Number Theory (Brighton, 1965) , Thompson, Washington, D.C., 1967, 305-347.
[19] M. F. Vignéras, Représentations modulaires de \(\mathrm{GL}(2,F)\) en caractéristique \(\ell\), \(F\) corps \(p\)-adique, \(p\neq l\) , Compos. Math. 72 (1989), 33-66.
[20] M.F. Vignéras, Représentations \(\ell\)-modulaires d’un groupe réductif \(p\)-adique avec \(\ell\neq p\) , Progr. Math. 137 , Birkhäuser, Boston, 1996. · Zbl 0859.22001
[21] A. Weil, “Fonction zêta et distributions” in Seminaire Bourbaki, Vol. 9 , no. 312, Soc. Math. Fr., Paris, 1966. · Zbl 0226.12008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.