×

Optimal portfolio choice with path dependent benchmarked labor income: a mean field model. (English) Zbl 1489.34117

Summary: We consider the life-cycle optimal portfolio choice problem faced by an agent receiving labor income and allocating her wealth to risky assets and a riskless bond subject to a borrowing constraint. In this paper, to reflect a realistic economic setting, we propose a model where the dynamics of the labor income has two main features. First, labor income adjusts slowly to financial market shocks, a feature already considered in [E. Biffis et al., SIAM J. Control Optim. 58, No. 4, 1906–1938 (2020; Zbl 1451.49031)]. Second, the labor income \(y_i\) of an agent \(i\) is benchmarked against the labor incomes of a population \(y^n := ( y_1 , y_2 , \dots , y_n )\) of \(n\) agents with comparable tasks and/or ranks. This last feature has not been considered yet in the literature and is faced taking the limit when \(n \to + \infty\) so that the problem falls into the family of optimal control of infinite-dimensional McKean-Vlasov Dynamics, which is a completely new and challenging research field. We study the problem in a simplified case where, adding a suitable new variable, we are able to find explicitly the solution of the associated HJB equation and find the optimal feedback controls. The techniques are a careful and nontrivial extension of the ones introduced in the previous papers of E. Biffis et al. [loc. cit.; “Optimal portfolio choice with path dependent labor income: finite retirement time”, Preprint, arXiv:2101.09732].

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
91G10 Portfolio theory
34K50 Stochastic functional-differential equations
49L12 Hamilton-Jacobi equations in optimal control and differential games
49L20 Dynamic programming in optimal control and differential games

Citations:

Zbl 1451.49031

References:

[1] Aksamit, A.; Jeanblanc, M., Enlargement of filtration with finance in view, (Springer Briefs in Quantitative Finance (2017), Springer) · Zbl 1397.91003
[2] M. Basei, H. Pham, Linear-quadratic McKean-Vlasov stochastic control problems with random coefficients on finite and infinite horizon, and applications, Arxiv: https://arxiv.org/abs/1711.09390. · Zbl 1416.49040
[3] Bensoussan, A.; Da Prato, G.; Delfour, M. C.; Mitter, S. K., Representation and Control of Infinite Dimensional Systems (2007), Birkhauser · Zbl 1117.93002
[4] Benzoni, L.; Collin-Dufresne, P.; Goldstein, R. S., Portfolio choice over the life-cycle when the stock and labor markets are cointegrated, J. Finance, 62, 5, 2123-2167 (2007)
[5] S. Biagini, F. Gozzi, M. Zanella, Robust portfolio choice with sticky wages. Arxiv: https://arxiv.org/abs/2104.12010.
[6] Biffis, E.; Cappa, G.; Gozzi, F.; Zanella, M., Optimal portfolio choice with path dependent labor income: Finite retirement time (2021), Arxiv: https://arxiv.org/abs/2101.09732
[7] Biffis, E.; Goldys, B.; Prosdocimi, C.; Zanella, M., A pricing formula for delayed claims: appreciating the past to value the future (2019), Arxiv: https://arxiv.org/abs/1505.04914
[8] Biffis, E.; Gozzi, F.; Prosdocimi, C., Optimal portfolio choice with path dependent labor income: the infinite horizon case, SIAM J. Control Optim., 58, 4, 1906-1938 (2020) · Zbl 1451.49031
[9] Burzoni, M.; Ignazio, V.; Reppen, M.; Soner, M., Viscosity solutions for controlled mckean-vlasov jump-diffusions (2019), arXiv:1909.12337v2 · Zbl 1472.49054
[10] Carmona, R.; Delarue, F., Probabilistic Theory of Mean Field Games with Applications Vol I. and II. Probability Theory and Stochastic Modelling (2018), Springer · Zbl 1422.91015
[11] Chojnowska-Michalik, A., Representation theorem for general stochastic delay equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26, 7, 635-642 (1978) · Zbl 0415.60057
[12] A. Cosso, F. Gozzi, I. Kharroubi, H. Pham, M. Rosestolato, Optimal control of path-dependent McKean-Vlasov SDEs in infinite dimension, Arxiv: https://arxiv.org/abs/2012.14772.
[13] Cosso, A.; Pham, H., Zero-sum stochastic differential games of generalized McKean-Vlasov type, J. Math. Pures Appl., 129, 9, 180-212 (2019) · Zbl 1423.49039
[14] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions (2014), Cambridge University Press · Zbl 1317.60077
[15] Dickens, W. T.; Goette, L.; Groshen, E. L.; Holden, S.; Messina, J.; Schweitzer, M. E.; Turunen, J.; Ward, M. E., How wages change: Micro evidence from the international wage flexibility project, J. Econ. Perspect., 21, 2, 195?214 (2007)
[16] Dybvig, P. H.; Liu, H., Lifetime consumption and investment: retirement and constrained borrowing, J. Econom. Theory, 145, 885-907 (2010) · Zbl 1245.91044
[17] Fabbri, G.; Gozzi, F.; Swiech, A., Stochastic optimal control in infinite dimensions: Dynamic programming and HJB equations, (Probability Theory and Stochastic Modelling, Vol. 82 (2017), Springer) · Zbl 1379.93001
[18] Flandoli, F.; Russo, F.; Zanco, G., Infinite-dimensional calculus under weak spatial regularity of the processes, J. Theoret. Probab., 31, 2, 789-826 (2018) · Zbl 1429.60053
[19] Flandoli, F.; Zanco, G., An infinite-dimensional approach to path-dependent Kolmogorov equations, Ann. Probab., 44, 4, 2643-2693 (2016) · Zbl 1356.60101
[20] Fouque, J.-P.; Zhang, Z., Mean field game with delay: A toy model, risks, MDPI, Open Access Journal, 6, 3, 1-17 (2018)
[21] Freni, G.; Gozzi, F.; Salvadori, N., Existence of optimal strategies in linear multisector models, Econom. Theory, 29, 1, 25-48 (2006) · Zbl 1113.91037
[22] Hale, J. K.; Verduyn Lunel, S. M., Introduction to Functional Differential Equations (1993), Springer-Verlag · Zbl 0787.34002
[23] Jeanblanc, M.; Yor, M.; Chesney, Mathematical Methods for Financial Markets (2009), Springer-Verlag · Zbl 1205.91003
[24] Jourdain, B.; Méléard, S.; Woyczynski, W. A., Nonlinear stochastic differential equations driven by Lévy processes and related differential equations, AlEA-Latin-Amer. J. Probabil. Math. Stat., 4, 31-46 (2008)
[25] Karatzsas, I.; Shreve, S. E., Brownian Motion and Stochastic Calculus (1991), Springer-Verlag · Zbl 0734.60060
[26] Karatzsas, I.; Shreve, S. E., Methods of Mathematical Finance (1998), Springer-Verlag · Zbl 0941.91032
[27] Khan, S., Evidence of nominal wage stickiness from microdata, Amer. Econ. Rev., 87, 5, 993-1008 (1997)
[28] Le Bihan, H.; Montornes, J.; Heckel, T., Sticky wages: Evidence from quarterly microeconomic data, Amer. Economic J. Macroecon., 4, 3, 1-32 (2012)
[29] S.E.A. Mohammed, Stochastic Differential Systems with Memory: Theory, Examples and Applications, in: L. Decreusefond, B. Øksendal, J. Gjerde, A.S. Üstünel (Eds.), Stochastic Analysis and Related Topics VI. Progress in Probability, Vol. 42, Birkhäuser, Boston, MA. · Zbl 0901.60030
[30] Park, J. W.; Kim, C. U., Getting to a feasible income equality, Plos One, 16, 3, Article e0249204 pp. (2021)
[31] Pham, H., Continuous-Time Stochastic Control and Optimization with Financial Applications (2009), Springer-Verlag Berlin · Zbl 1165.93039
[32] Pham, H.; Wei, X., Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics, SIAM J. Control Optim., 55, 2017, 1069-1101 (2017) · Zbl 1361.93069
[33] Protter, P. E., Stochastic Integration and Differential Equations (2005), Springer-Verlag Berlin
[34] Wilkinson, R. G.; Pickett, K. E., Income inequality and social dysfunction, (Annual Review of Sociology, Vol. 35 (2009)), 493-511, (Volume publication date 11 2009)
[35] Wu, C.; Zhang, J., Viscosity solutions to parabolic master equations and mckean-vlasov SDEs with closed-loop controls (2018), Preprint arXiv:1805.02639, to appear in Annals of Applied Probability
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.