×

An infinite-dimensional approach to path-dependent Kolmogorov equations. (English) Zbl 1356.60101

Motivated by a finite-dimensional path-dependent stochastic differential equation \[ dX=b_t(X_t)\,dt+\sigma\,dW,\qquad X_{t_0}=\gamma_{t_0} \] driven by an \(\mathbb R^d\)-valued Wiener process where \(\sigma\) is a diagonalizable \((d\times d)\)-matrix and the \(b_t\) map functions to vectors in \(\mathbb R^d\), the authors consider an infinite-dimensional stochastic differential equation \[ dY=[AY+B(t,Y(t))]\,dt+\Sigma\,d\beta,\qquad Y(s)=y \] in various Banach spaces, typically in a product of \(\mathbb R^d\) and a function space such as continuous, càdlàg or \(L^p\)-integrable functions. Here, \(A\) is an (unbounded) linear operator (typically, the derivative), \(B\) corresponds to the maps \(b_t\), \(\Sigma\) is a diffusion operator corresponding to \(\sigma\) and \(\beta\) is a finite-dimensional Brownian motion corresponding to \(W\).
The authors first prove the existence and uniqueness of mild solutions \(Y^{s,y}\) to the infinite-dimensional stochastic differential equation. The solutions \(Y^{s,y}\) are shown to be \(C^{2,\alpha}\)-continuous in \(y\) and continuous in \(s\), they satisfy the Markov property and \(u(t,y)=\mathbb E\,[\Phi(U^{t,y}(T))]\) satisfies the associated backward Kolmogorov equation in the respective Banach space, with the terminal condition \(\Phi\in C^{2,\alpha}_b\) at time \(T\).
Finally, the results are compared with the path-dependent calculus of Dupire, Cont and Fournié.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)
35C99 Representations of solutions to partial differential equations

References:

[1] Bensoussan, A., Da Prato, G., Delfour, M. C. and Mitter, S. K. (1992). Representation and Control of Infinite Dimensional Systems . Birkhäuser, Boston. · Zbl 0781.93002
[2] Cont, R. and Fournie, D. (2010a). A functional extension of the Ito formula. C. R. Math. Acad. Sci. Paris 348 57-61. · Zbl 1202.60082 · doi:10.1016/j.crma.2009.11.013
[3] Cont, R. and Fournié, D.-A. (2010b). Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal. 259 1043-1072. · Zbl 1201.60051 · doi:10.1016/j.jfa.2010.04.017
[4] Cont, R. and Fournié, D.-A. (2013). Functional Itô calculus and stochastic integral representation of martingales. Ann. Probab. 41 109-133. · Zbl 1272.60031 · doi:10.1214/11-AOP721
[5] Cosso, A. (2012). Viscosity solutions of path-dependent PDEs and non-Markovian forward-backward stochastic equations. Preprint. Available at . arXiv:1202.2502
[6] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions . Cambridge Univ. Press, Cambridge. · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[7] Di Girolami, C., Fabbri, G. and Russo, F. (2014). The covariation for Banach space valued processes and applications. Metrika 77 51-104. · Zbl 1455.60073 · doi:10.1007/s00184-013-0472-6
[8] Di Girolami, C. and Russo, F. (2010). Infinite dimensional stochastic calculus via regularization. HAL INRIA 00473947.
[9] Di Girolami, C. and Russo, F. (2012). Generalized covariation and extended Fukushima decomposition for Banach space-valued processes. Applications to windows of Dirichlet processes. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 1250007, 50. · Zbl 1279.60067 · doi:10.1142/S0219025712500075
[10] Di Girolami, C. and Russo, F. (2014). Generalized covariation for Banach space valued processes, Itô formula and applications. Osaka J. Math. 51 729-783. · Zbl 1308.60039
[11] Dupire, B. (2009). Functional Itô calculus. Portfolio Research Paper 2009-04, Bloomberg.
[12] Ekren, I., Touzi, N. and Zhang, J. (2016a). Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I. Ann. Probab. 44 1212-1253. · Zbl 1375.35250 · doi:10.1214/14-AOP999
[13] Ekren, I., Touzi, N. and Zhang, J. (2016b). Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II. Ann. Probab. 44 2507-2553. · Zbl 1375.35250 · doi:10.1214/14-AOP999
[14] Ekren, I., Keller, C., Touzi, N. and Zhang, J. (2014). On viscosity solutions of path dependent PDEs. Ann. Probab. 42 204-236. · Zbl 1320.35154 · doi:10.1214/12-AOP788
[15] Federico, S., Goldys, B. and Gozzi, F. (2010). HJB equations for the optimal control of differential equations with delays and state constraints, I: Regularity of viscosity solutions. SIAM J. Control Optim. 48 4910-4937. · Zbl 1208.49048 · doi:10.1137/09076742X
[16] Fuhrman, M., Masiero, F. and Tessitore, G. (2010). Stochastic equations with delay: Optimal control via BSDEs and regular solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 48 4624-4651. · Zbl 1213.60109 · doi:10.1137/080730354
[17] Gozzi, F. and Marinelli, C. (2006). Stochastic optimal control of delay equations arising in advertising models. In Stochastic Partial Differential Equations and Applications-VII. Lect. Notes Pure Appl. Math. 245 133-148. Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1107.93035 · doi:10.1201/9781420028720.ch13
[18] Peng, S. and Wang, F. (2011). BSDE, path-dependent PDE and nonlinear Feynman-Kac formula. Preprint. Available at . arXiv:1108.4317 · Zbl 1342.60108 · doi:10.1007/s11425-015-5086-1
[19] Tang, S. and Zhang, F. (2013). Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete Contin. Dyn. Syst. 35 5521-5553. · Zbl 1332.93384 · doi:10.3934/dcds.2015.35.5521
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.