×

On the Stieltjes constants and gamma functions with respect to alternating Hurwitz zeta functions. (English) Zbl 1489.11134

Summary: Dating back to Euler, in classical analysis and number theory, the Hurwitz zeta function \[\zeta(z, q) = \sum_{n = 0}^\infty \frac{ 1}{ ( n + q )^z},\] the Riemann zeta function \(\zeta(z)\), the generalized Stieltjes constants \(\gamma_k(q)\), the Euler constant \(\gamma \), Euler’s gamma function \(\Gamma(q)\) and the digamma function \(\psi(q)\) have many close connections on their definitions and properties. There are also many integrals, series or infinite product representations of them along the history. In this note, we try to provide a parallel story for the alternating Hurwitz zeta function (also known as the Hurwitz-type Euler zeta function) \[ \zeta_E(z, q) = \sum_{n = 0}^\infty \frac{ ( - 1 )^n}{ ( n + q )^z},\] the alternating zeta function \(\zeta_E(z)\) (also known as the Dirichlet’s eta function \(\eta(z))\), the modified Stieltjes constants \(\widetilde{\gamma}_k(q)\), the modified Euler constant \(\widetilde{\gamma}_0\), the modified gamma function \(\widetilde{\Gamma}(q)\) and the modified digamma function \(\widetilde{\psi}(q)\) (also known as the Nielsen’s \(\beta\) function). Many new integrals, series or infinite product representations of these constants and special functions have been found. By the way, we also get two new series expansions of \(\pi \): \[ \frac{ \pi^2}{ 12} = \frac{ 3}{ 4} - \sum_{k = 1}^\infty( \zeta_E(2 k + 2) - 1)\] and \[\frac{ \pi}{ 2} = \log 2 + 2 \sum_{k = 1}^\infty \frac{ ( - 1 )^k}{ k !} \widetilde{\gamma}_k(1) \sum_{j = 0}^k S(k, j) j! .\]

MSC:

11M35 Hurwitz and Lerch zeta functions
11B68 Bernoulli and Euler numbers and polynomials
33B15 Gamma, beta and polygamma functions

Software:

DLMF

References:

[1] (Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (1972), Dover: Dover New York) · Zbl 0543.33001
[2] Apéry, R., Irrationalité de \(\zeta(2)\) et \(\zeta(3)\), Astérisque, 61, 11-13 (1979) · Zbl 0401.10049
[3] Berndt, B. C., On the Hurwitz zeta-function, Rocky Mt. J. Math., 2, 1, 151-157 (1972) · Zbl 0229.10023
[4] Boyadzhiev, K. N.; Medina, L. A.; Moll, V. H., The integrals in Gradshteyn and Ryzhik. Part 11: the incomplete beta function, Scientia, Ser. A, Math. Sci., 18, 61-75 (2009) · Zbl 1221.33003
[5] Cohen, H., Number Theory Vol. II: Analytic and Modern Tools, Graduate Texts in Mathematics, vol. 240 (2007), Springer: Springer New York · Zbl 1119.11002
[6] Can, M.; Dağlı, M. C., Character analogue of the Boole summation formula with applications, Turk. J. Math., 41, 5, 1204-1223 (2017) · Zbl 1424.65002
[7] Coffey, M. W., New summation relations for the Stieltjes constants, Proc. R. Soc., Math. Phys. Eng. Sci., 462, 2073, 2563-2573 (2006) · Zbl 1149.65302
[8] Coffey, M. W., On some series representations of the Hurwitz zeta function, J. Comput. Appl. Math., 216, 1, 297-305 (2008) · Zbl 1134.11032
[9] Coffey, M. W., Hypergeometric summation representations of the Stieltjes constants, Analysis, 33, 2, 121-142 (2013) · Zbl 1284.11118
[10] Coffey, M. W., Series representations for the Stieltjes constants, Rocky Mt. J. Math., 44, 2, 443-477 (2014) · Zbl 1320.11085
[11] Cvijović, D., A note on convexity properties of functions related to the Hurwitz zeta and alternating Hurwitz zeta function, J. Math. Anal. Appl., 487, 1, Article 123972 pp. (2020) · Zbl 1435.11115
[12] Deninger, C., On the analogue of the formula of Chowla and Selberg for real quadratic fields, J. Reine Angew. Math., 351, 171-191 (1984) · Zbl 0527.12009
[13] Ferguson, R. P., An application of Stieltjes integration to the power series coefficients of the Riemann zeta function, Am. Math. Mon., 70, 60-61 (1963) · Zbl 0112.30202
[14] Flajolet, P.; Salvy, B., Euler sums and contour integral representations, Exp. Math., 7, 1, 15-35 (1998) · Zbl 0920.11061
[15] Farr, R. E.; Pauli, S.; Saidak, F., On fractional Stieltjes constants, Indag. Math., 29, 5, 1425-1431 (2018) · Zbl 1423.11157
[16] Gould, H. W., Euler’s formula for nth differences of powers, Am. Math. Mon., 85, 6, 450-467 (1978) · Zbl 0397.10055
[17] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (1994), Academic Press, Inc.: Academic Press, Inc. Boston, MA, translated from the fourth Russian edition, fifth edition, translation edited and with a preface by Alan Jeffrey · Zbl 0918.65002
[18] Hurwitz, A., Einige Eigenschaften der Dirichletschen Funktionen \(F(s) = \sum(\frac{ D}{ n}) \cdot \frac{ 1}{ n^s} \), die bei der Bestimmung der Klassenanzahlen Binärer quadratischer Formen auftreten, Z. Angew. Math. Phys., 27, 86-101 (1882)
[19] Hu, S.; Kim, D.; Kim, M.-S., On reciprocity formula of Apostol-Dedekind sum with quasi-periodic Euler functions, J. Number Theory, 162, 54-67 (2016) · Zbl 1402.11064
[20] Hu, S.; Kim, D.; Kim, M.-S., Special values and integral representations for the Hurwitz-type Euler zeta functions, J. Korean Math. Soc., 55, 1, 185-210 (2018) · Zbl 1391.33003
[21] Hu, S.; Kim, M.-S., On Dirichlet’s lambda function, J. Math. Anal. Appl., 478, 2, 952-972 (2019) · Zbl 1472.11075
[22] Hu, S.; Kim, M.-S., On asymptotic series expansions for the derivative of the alternating Hurwitz zeta function, preprint
[23] Jordan, C., Calculus of Finite Differences (1965), Introduction by Harry C. Carver Chelsea Publishing Co.: Introduction by Harry C. Carver Chelsea Publishing Co. New York · Zbl 0154.33901
[24] Kanemitsu, S.; Kumagai, H.; Yoshimoto, M., Sums involving the Hurwitz zeta function, Ramanujan J., 5, 1, 5-19 (2001) · Zbl 0989.11043
[25] Kreminski, R., Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants, Math. Comput., 72, 243, 1379-1397 (2003) · Zbl 1033.11043
[26] Kim, M.-S.; Hu, S., On p-adic diamond-Euler Log Gamma functions, J. Number Theory, 133, 4233-4250 (2013) · Zbl 1364.11149
[27] Kim, M.-S., Some series involving the Euler zeta function, Turk. J. Math., 42, 3, 1166-1179 (2018) · Zbl 1424.11132
[28] Min, J., Zeros and special values of Witten zeta functions and Witten L-functions, J. Number Theory, 134, 240-257 (2014) · Zbl 1317.11087
[29] Milgram, M. S., Integral and series representations of Riemann’s zeta function and Dirichlet’s eta function and a medley of related results, J. Math., Article 181724 pp. (2013) · Zbl 1280.11047
[30] Nantomah, K., Certain properties of the Nielsen’s β-function, Bull. Int. Math. Virtual Inst., 9, 2, 263-269 (2019) · Zbl 1463.26018
[31] NIST, Digital library of mathematical functions, available at
[32] Sitaramachandra Rao, R., A formula of S. Ramanujan, J. Number Theory, 25, 1, 1-19 (1987) · Zbl 0606.10032
[33] Srivastava, H. M.; Choi, J., Series Associated with the Zeta and Related Functions (2001), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 1014.33001
[34] Stieltjes, T. J., Table des valeurs des sommes \(S_k = \sum_{n = 1}^\infty n^{- k}\), Acta Math., 10, 1, 299-302 (1887) · JFM 19.0241.02
[35] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0951.30002
[36] Williams, K. S.; Zhang, N. Y., Special values of the Lerch zeta function and the evaluation of certain integrals, Proc. Am. Math. Soc., 119, 1, 35-49 (1993) · Zbl 0785.11046
[37] Zhang, N. Y.; Williams, K. S., Some results on the generalized Stieltjes constants, Analysis, 14, 2-3, 147-162 (1994) · Zbl 0808.11054
[38] Zorich, V. A., Mathematical Analysis II (2016), Springer: Springer Heidelberg, Translated from the fourth and the sixth corrected (2012) Russian editions by Roger Cooke and Octavio Paniagua T. Universitext · Zbl 1331.00005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.