×

Moving finite element methods for a system of semi-linear fractional diffusion equations. (English) Zbl 1488.65447

Summary: This paper studies a system of semi-linear fractional diffusion equations which arise in competitive predator-prey models by replacing the second-order derivatives in the spatial variables with fractional derivatives of order less than two. Moving finite element methods are proposed to solve the system of fractional diffusion equations and the convergence rates of the methods are proved. Numerical examples are carried out to confirm the theoretical findings. Some applications in anomalous diffusive Lotka-Volterra and Michaelis-Menten-Holling predator-prey models are studied.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35S10 Initial value problems for PDEs with pseudodifferential operators
65R20 Numerical methods for integral equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
92D25 Population dynamics (general)
92-08 Computational methods for problems pertaining to biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations

Software:

FODE
Full Text: DOI

References:

[1] B. BAEUMER, M. KOVÁCS AND M. M. MEERSCHAERT, Fractional reproduction-dispersal equa-tions and heavy tail dispersal kernels, Bull. Math. Biol., 69 (2007), pp. 2281-2297. · Zbl 1296.92195
[2] B. BAEUMER, M. KOVÁCS AND M. M. MEERSCHAERT, Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 55 (2008), pp. 2212-2226. · Zbl 1142.65422
[3] R. E. BANK AND R. F. SANTOS, Analysis of some moving space-time finite element methods, SIAM J. Numer. Anal., 30 (1993), pp. 1-18. · Zbl 0770.65060
[4] F. BRAUER AND C. CASTILLO-CHAVEZ, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, Heidelberg, 2000. · Zbl 0967.92015
[5] M. CAVANI AND M. FARKAS, Bifurcation in a predator-prey model with memory and diffusion, II: Turing bifurcation, Acta Math. Hungar., 63 (1994), pp. 375-393. · Zbl 0809.92018
[6] C. CHEN, F. LIU, V. ANH AND I. TURNER, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32 (2010), pp. 1740-1760. · Zbl 1217.26011
[7] H. CHEN AND D. XU, A compact difference scheme for an evolution equation with weakly singular kernel, Numer. Math. Theor. Meth. Appl., 5 (2012), pp. 559-572. · Zbl 1289.65283
[8] H. CHEN, D. XU AND Y. PENG, An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation, Int. J. Comput. Math., 92 (2015), pp. 2178-2197. · Zbl 1332.65187
[9] W. DENG, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), pp. 204-226. · Zbl 1416.65344
[10] W. DENG, S. DU AND Y. WU, High order finite difference WENO schemes for fractional differential equations, Appl. Math. Lett., 26 (2013), pp. 362-366. · Zbl 1259.65128
[11] T. DUPONT, Mesh modification for evolution equations, Math. Comput., 39 (1982), pp. 85-107. · Zbl 0493.65044
[12] T. DUPONT AND Y. LIU, Symmetric error estimates for moving mesh Galerkin methods for advection-diffusion equations, SIAM J. Numer. Anal., 40 (2002), pp. 914-927. · Zbl 1025.65051
[13] V. J. ERVIN AND J. P. ROOP, Variational formulation for the stationary fractional advection disper-sion equation, Numer. Meth. PDEs, 22 (2006), pp. 558-576. · Zbl 1095.65118
[14] V. J. ERVIN AND J. P. ROOP, Variational solution of fractional advection dispersion equations on bounded domains in R d , Numer. Meth. PDEs, 23 (2007), pp. 256-281. · Zbl 1117.65169
[15] V. J. ERVIN, N. HEUER AND J. P. ROOP, Numerical approximation of a time dependent nonlinear space-fractional diffusion equation, SIAM J. Numer. Anal., 45 (2007), pp. 572-591. · Zbl 1141.65089
[16] G. J. FIX AND J. P. ROOP, Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl., 48 (2004), pp. 1017-1033. · Zbl 1069.65094
[17] N. J. FORD, J. XIAO AND Y. YAN, A finite element method for time fractional partial differential equations, Fract. Cal. Appl. Anal., 14 (2011), pp. 454-474. · Zbl 1273.65142
[18] G. GAO AND Z. SUN, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), pp. 586-595. · Zbl 1211.65112
[19] G. GAO, Z. SUN AND Y. ZHANG, A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions, J. Comput. Phys., 231 (2012), pp. 2865-2879. · Zbl 1242.65160
[20] W. HUANG AND R. D. RUSSELL, Adaptive Moving Mesh Methods, Springer, New York, 2011. · Zbl 1227.65090
[21] M. ILIC, F. LIU, I. TURNER AND V. ANH, Numerical approximation of a fractional-in-space diffusion equation I, Frac. Calc. Appl. Anal., 8 (2005), pp. 323-341. · Zbl 1126.26009
[22] M. ILIC, F. LIU, I. TURNER AND V. ANH, Numerical approximation of a fractional-in-space dif-fusion equation II: with nonhomogeneous boundary conditions, Frac. Calc. Appl. Anal., 9 (2006), pp. 333-349. · Zbl 1132.35507
[23] X. JI AND H. TANG, High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one-and two-dimensional fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 5 (2012), pp. 333-358. · Zbl 1274.65271
[24] Y. JIANG AND J. MA, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), pp. 3285-3290. · Zbl 1216.65130
[25] Y. JIANG AND J. MA, Moving finite element methods for time fractional partial differential equa-tions, Sci. China Math., 56 (2013), pp. 1287-1300. · Zbl 1290.65091
[26] S. KOVÁCS, K. KISS AND M. FARKAS, Qualitative behaviour of a ratio-dependent predator-prey system, Nonlinear Anal. RWA, 10 (2009), pp. 1627-1642. · Zbl 1159.93352
[27] X. J. LI AND C. J. XU, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108-2131. · Zbl 1193.35243
[28] X. J. LI AND C. J. XU, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), pp. 1016-1051. · Zbl 1364.35424
[29] J. MA, Convergence analysis of moving Godunov methods for dynamical boundary layers, Comput. Math. Appl., 59 (2010), pp. 80-93. · Zbl 1189.65198
[30] J. MA, Y. JIANG AND K. XIANG, On a moving mesh method for solving partial integro-differential equations, J. Comput. Math., 27 (2009), pp. 713-728. · Zbl 1212.65519
[31] J. MA AND Y. JIANG, Analysis of an adaptive remeshing algorithm for reaction-diffusion equations with traveling heat source, Scientia Sinica Math., 41 (2011), pp. 235-251. · Zbl 1488.65393
[32] J. MA, W. HUANG AND R. D. RUSSELL, Analysis of a moving collocation method for one-dimensional partial differential equations, Sci. China Math., 55 (2012), pp. 827-840. · Zbl 1245.65138
[33] J. MA AND Y. JIANG, Moving collocation methods for time fractional differential equations and simulation of blowup, Sci. China Math., 54 (2011), pp. 611-622. · Zbl 1217.34010
[34] J. MA, J. LIU AND Z. ZHOU, Convergence analysis of moving finite element methods for space fractional differential equations, J. Comput. Appl. Math., 255 (2014), pp. 661-670. · Zbl 1291.65303
[35] J. A. MACKENZIE AND W. R. MEKWI, An analysis of stability and convergence of a finite-difference discretization of a model parabolic PDE in 1D using a moving mesh, IMA J. Numer. Anal., 27 (2007), pp. 507-528. · Zbl 1120.65100
[36] W. MCLEAN AND K. MUSTAPHA, Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation, Numer. Algorithm, 5 (2009), pp. 69-88. · Zbl 1177.65194
[37] M. MEERSCHAERT AND C. TADJERAN, Finite difference approximations for fractional advection dispersion flow equations, J. Comput. Appl. Math., 172 (2004), pp. 65-77. · Zbl 1126.76346
[38] M. MEERSCHAERT, H. SCHEFFLER AND C. TADJERAN, Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 211 (2006), pp. 249-261. · Zbl 1085.65080
[39] K. MUSTAPHA AND M. MCLEAN, Piecewise-linear, discontinous Galerkin method for a fractional diffusion equation, Numer. Algorithm, 56 (2011), pp. 159-184. · Zbl 1211.65127
[40] J. REN, Z. SUN AND X. ZHAO, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 232 (2013), pp. 456-467. · Zbl 1291.35428
[41] S. SHEN, F. LIU, V. ANH AND I. TURNER, The fundemental solution and numerical solution of the Riesz fractional advection-dispersion equation, IMA J. Appl. Math., 73 (2008), pp. 850-872. · Zbl 1179.37073
[42] C. TADJERAN, M. MEERSCHAERT AND H. SCHEFFLER, A second-order accurate numerical ap-proximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), pp. 205-213. · Zbl 1089.65089
[43] C. TADJERAN AND M. MEERSCHAERT, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 220 (2007), pp. 813-823. · Zbl 1113.65124
[44] T. TANG AND J. XU, Adaptive Computations: Theory and Algorithms, Science Press, Bei-jing, 2007.
[45] V. THOMÉE, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin, 2006. · Zbl 1105.65102
[46] Q. YANG, F. LIU AND I. TURNER, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34 (2010), pp. 200-218. · Zbl 1185.65200
[47] Y. YU, W. DENG AND Y. WU, Positivity and boundedness preserving schemes for the fractional reaction-diffusion equation, Sci. China Math., 56 (2013), pp. 2161-2178. · Zbl 1292.65095
[48] X. ZHAO AND Z. SUN, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 230 (2011), pp. 6061-6074. · Zbl 1227.65075
[49] H. ZHANG, F. LIU AND V. ANH, Galerkin finite element approximations of symmetric space-fractional partial differential equations, Appl. Math. Comput., 217 (2010), pp. 2534-2545. · Zbl 1206.65234
[50] N. ZHANG, W. DENG AND Y. WU, Finite difference/ element method for a two-dimensional mod-ified fractional diffusion equation, Adv. Appl. Math. Mech., 4 (2012), pp. 496-518. · Zbl 1262.65108
[51] Y. ZHANG, Z. SUN AND H. WU, Error estimate of Crank-Nicolson-type difference for subdiffusion equation, SIAM J. Numer. Anal., 49 (2011), pp. 2302-2322. · Zbl 1251.65132
[52] P. ZHUANG, F. LIU, V. ANH AND I. TURNER, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009), pp. 1760-1781. · Zbl 1204.26013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.