×

Qualitative behaviour of a ratio-dependent predator-prey system. (English) Zbl 1159.93352

Summary: This paper deals with the qualitative properties of an autonomous system of differential equations, modeling ratio-dependent predator-prey interactions.
This model differs from traditional ratio dependent models essentially in the predator mortality term, the death rate of the predator is not constant but instead increases when there is overcrowding.
We incorporate delay(s) into the system. The most important observation is that as the delay(s) is (are) increased the originally asymptotic stable interior equilibrium loses its stability. Furthermore at a certain critical value a Hopf bifurcation takes place: small amplitude periodic solutions arise.

MSC:

93D20 Asymptotic stability in control theory
49N75 Pursuit and evasion games
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] Akcakaya, H. R.; Arditi, R.; Ginzburg, L. R., Ratio-dependent prediction: an abstraction that works, Ecology, 76, 995-1004 (1995)
[2] Arditi, R.; Berryman, A. A., The biological paradox, Trends Ecol. Evol., 6, 32 (1991)
[3] Ariditi, R.; Grinzburg, L. R., Coupling in predator-prey dynamics: Ratio-dependence, J. Theoret. Biology, 139, 311-326 (1989)
[4] Bellman, R.; Cooke, K., Differential Difference Equations (1963), Academic Press · Zbl 0105.06402
[5] Berezovskaya, F.; Karev, G.; Arditi, R., Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 43, 221-246 (2001) · Zbl 0995.92043
[6] Berryman, A. A., The origins and evolution of predator-prey theory, Ecology, 73, 1530-1535 (1992)
[7] Boese, F. G., Stability with respect to the delay: On a paper of K. L. Cooke and P. van den Driessche, J. Math. Anal. Appl., 228, 293-321 (1998) · Zbl 0918.34071
[8] Cavani, M.; Farkas, M., Bifurcations in a predator-prey model with memory and diffusion. I: Andronov-Hopf bifurcation, Acta Math. Hungar., 63, 3, 213-229 (1994) · Zbl 0809.92017
[9] Cavani, M.; Lizana, M.; Smith, H. L., Stable Periodic Orbits for a Predator-Prey Model with Delay, J. Math. Anal. Appl., 249, 324-339 (2000) · Zbl 0997.92035
[10] Cooke, L.; van den Driessche, P., On zeroes of some transcendental equations, Funkcialaj Ekvacioj, 29, 77-90 (1986) · Zbl 0603.34069
[11] Cooke, L.; Grossman, Z., Discrete delay, distributed delay and stability switches, Funkcialaj Ekvacioj, 29, 77-90 (1986)
[12] Cosner, C.; DeAngelis, D. L.; Ault, J. S.; Olson, D. B., Effects of spatial grouping on the functional response of predators, Theoret. Popul. Biol., 56, 1, 65-75 (1999) · Zbl 0928.92031
[13] DeAngelis, D. L.; Goldstein, R. A.; O’Neill, R. V., A model for trophic interaction, Ecology, 56, 881-892 (1975)
[14] Fan, Yong-Hong; Li, Wan-Tong, Permanence in delayed ratio-dependent predator-prey models with monotonic functional responses, Nonlinear Anal. RWA, 8, 2, 424-434 (2007) · Zbl 1152.34368
[15] Farkas, M., Periodic Motions (1994), Springer Verlag: Springer Verlag Berlin, Heidelberg, New York · Zbl 0805.34037
[16] Freedman, H. I.; Sree Hari Rao, V., Stability criteria for a system involving two time delays, SIAM J. Appl. Math., 46, 4, 552-560 (1986) · Zbl 0624.34066
[17] Freedman, H. I.; Mathsen, R. M., Persistence in predator-prey systems with ratio-dependent predator influence, Bull. Math. Biol., 55, 817-827 (1993) · Zbl 0771.92017
[18] Hale, J., Theory of Functional Differential Equations (1977), Springer Verlag: Springer Verlag Berlin, Heidelberg, New York · Zbl 0352.34001
[19] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y.-H., Theory and Applications of Hopf Bifurcation (1981), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0474.34002
[20] Hale, J. K.; Infante, E. F.; Tsen, F.-S. P., Stability in linear delay equations, J. Math. Anal. Appl., 105, 2, 533-555 (1985) · Zbl 0569.34061
[21] Hayes, N. D., Roots of the transcendental equation associated with a certain difference-differential equation, J. London Math. Soc., 25, 226-232 (1950) · Zbl 0038.24102
[22] Hsu, S. B.; Hwang, T. W.; Kuang, Y., Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol., 42, 489-506 (2001) · Zbl 0984.92035
[23] Hsu, S. B.; Hwang, T. W.; Kuang, Y., Rich dynamics of a ratio-dependent one-prey two-predators model, J. Math. Biol., 43, 377-396 (2001) · Zbl 1007.34054
[24] Jost, C.; Arino, O.; Arditi, R., About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 61, 19-32 (1999) · Zbl 1323.92173
[25] Kolmanovskii, N. N.; Nosov, V. R., Stability of Functional Differential Equations (1986), Academic Press: Academic Press London · Zbl 0593.34070
[26] Kolmogorov, A. N., Sulla teoria di Volterra della lotta per l’esistence, G. Inst. Ital. Attuari, Mir., 7, 1, 74-80 (1936) · JFM 62.1263.01
[27] Kolmogorov, A. N., (Qualitative Analysis of Mathematical Models of Populations. Qualitative Analysis of Mathematical Models of Populations, Problems of Cybernetics, vol. 25 (1972), Moscow: Moscow Nauka), 100-106 · Zbl 0265.92008
[28] Kovács, S., Stability of a delayed ratio-dependent predator-prey system, Miskolc Math. Notes, 4, 2, 127-134 (2003) · Zbl 1058.34089
[29] Krall, A. M., Stability Techniques for Continuous Linear Systems (1968), Gordon and Breach: Gordon and Breach London · Zbl 0174.14102
[30] Kuang, Y.; Beretta, E., Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36, 389-406 (1998) · Zbl 0895.92032
[31] May, R., (Stabilitity and Complexity in Model Ecosystems. Stabilitity and Complexity in Model Ecosystems, Monographs in Population Biology (1973), Princeton University Press: Princeton University Press Princeton)
[32] MacDonald, N., Time lags in biological models, (Lecture Notes in Biomathematics (1978), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York) · Zbl 0403.92020
[33] Neubert, M. G.; Klepac, P.; van den Driessche, P., Stabilizing dispersal delays in predator-prey metapopulation models, Theoret. Popul. Biol., 61, 3, 339-347 (2002) · Zbl 1038.92032
[34] Rosenzweig, M. L., Paradox of enrichment: Destabilization of exploitation ecosystems in ecilogical time, Science, 171, 385-387 (1969)
[35] Smoller, J., Shock Wawes and Reaction-Diffusion Equations (1983), Springer Verlag: Springer Verlag Berlin, Heidelberg, New York · Zbl 0508.35002
[36] Stépán, G., Retarded dynamical systems: stability and characteristic functions, (Pitman Research Notes in Mathematics Series, vol. 210 (1989)) · Zbl 0686.34044
[37] Yu.M. Svirezhev, D.O. Logofet, Stability of Biological Communities, Mir, Moscow 1983; Yu.M. Svirezhev, D.O. Logofet, Stability of Biological Communities, Mir, Moscow 1983
[38] Tang, Y.; Beretta, E.; Solimano, F., Stability analysis of a Volterra predator-prey system with two delays, Canad. Appl. Math. Quart., 9, 1, 75-97 (2001) · Zbl 1049.34094
[39] Thingstad, T. F.; Langeland, I., Dynamics of chemostat culture: The effect of a delay in cell response, J. Theoret. Biol., 48, 1, 149-159 (1974)
[40] Wu, S.; Ren, G., Delay-independent stability criteria for a class of retarded dynamical systems with two delays, J. Sound Vibration, 270, 4-5, 625-638 (2004) · Zbl 1236.93090
[41] Xiao, D.; Ruan, S., Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43, 268-290 (2001) · Zbl 1007.34031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.