×

Geometric interpretation of fractional-order derivative. (English) Zbl 1488.26026

Summary: A new geometric interpretation of the Riemann-Liouville and Caputo derivatives of non-integer orders is proposed. The suggested geometric interpretation of the fractional derivatives is based on modern differential geometry and the geometry of jet bundles. We formulate a geometric interpretation of the fractional-order derivatives by using the concept of the infinite jets of functions. For this interpretation, we use a representation of the fractional-order derivatives by infinite series with integer-order derivatives. We demonstrate that the derivatives of non-integer orders connected with infinite jets of special type. The suggested infinite jets are considered as a reconstruction from standard jets with respect to order.

MSC:

26A33 Fractional derivatives and integrals
55R10 Fiber bundles in algebraic topology
58A20 Jets in global analysis

Software:

Sinc-Pack
Full Text: DOI

References:

[1] V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Dif- ferentiable Maps, Volume 1. Birkhäuser, Boston (2012).; Arnold, V. I.; Gusein-Zade, S. M.; Varchenko, A. N., Singularities of Dif- ferentiable Maps (2012) · Zbl 1290.58001
[2] F. Ben Adda, Geometric interpretation of the differentiability and gradient of real order. Comptes Rendus de l’Academie des Sciences - Series I - Mathematiques326, No 8 (1997), 931-934 [in French].; Ben Adda, F., Geometric interpretation of the differentiability and gradient of real order, Comptes Rendus de l’Academie des Sciences - Series I - Mathematiques, 326, 8, 931-934 (1997) · Zbl 0981.26006
[3] F. Ben Adda, Geometric interpretation of the fractional derivative. Journal of Fractional Calculus11 (1997), 21-51.; Ben Adda, F., Geometric interpretation of the fractional derivative, Journal of Fractional Calculus, 11, 21-51 (1997) · Zbl 0907.26005
[4] F. Ben Adda, The differentiability in the fractional calculus. Nonlinear Analysis47 (2001), 5423-5428.; Ben Adda, F., The differentiability in the fractional calculus, Nonlinear Analysis, 47, 5423-5428 (2001) · Zbl 1042.26502
[5] A.G. Butkovskii, S.S. Postnov, E.A. Postnova, Fractional integro- differential calculus and its control-theoretical applications, I. Mathematical fundamentals and the problem of interpretation. Automation and Remote Control74, No 4 (2013), 543-574.; Butkovskii, A. G.; Postnov, S. S.; Postnova, E. A., Fractional integro-differential calculus and its control-theoretical applications, I. Mathematical fundamentals and the problem of interpretation, Automation and Remote Control, 74, 4, 543-l574 (2013) · Zbl 1275.93039
[6] V.N. Chetverikov, A.B. Bocharov, S.V. Duzhin, N.G. Khor’kova, I.S. Krasil’shchik, A.V. Samokhin, Y.N. Torkhov, A.M. Verbovetsky, A.M. Vinogradov, Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Amer. Math. Soc., Providence (1999), 333 p.; Chetverikov, V. N.; Bocharov, A. B.; Duzhin, S. V.; Khor’kova, N. G.; Krasil’shchik, I. S.; Samokhin, A. V.; Torkhov, Y. N.; Verbovetsky, A. M.; Vinogradov, A. M., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, 333 (1999) · Zbl 0911.00032
[7] R. Cioc, Physical and geometrical interpretation of Grünwald-Letnikov differintegrals: Measurement of path and acceleration. Fract. Calc. Appl. Anal. 19, No 1 (2016), 161-172; ; .; Cioc, R., Physical and geometrical interpretation of Grünwald-Letnikov differintegrals: Measurement of path and acceleration, Fract. Calc. Appl. Anal, 19, 1, 161-172 (2016) · Zbl 1339.26019 · doi:10.1515/fca-2016-0009
[8] G. Giachetta, L. Mangiarotti, G. Sardanashvily, Advanced Classical Field Theory. World Scientific, Singapore (2009).; Giachetta, G.; Mangiarotti, L.; Sardanashvily, G., Advanced Classical Field Theory (2009) · Zbl 1189.70142
[9] R. Gorenflo, Afterthoughts on interpretation of fractional derivatives and integrals. In: P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods and Special Functions, Varna 1996, Proc. of 3rd Internat. Workshop, Institute of Mathematics and Inform., Bulgarian Acad. of Sciences, Sofia (1998), 589-591.; Gorenflo, R.; Rusev, P.; Dimovski, I.; Kiryakova, V., Transform Methods and Special Functions, Varna 1996, 589-591 (1998)
[10] R. Herrmann, Towards a geometric interpretation of generalized fractional integrals - Erdelyi-Kober type integrals on \(R^N\), as an example. Fract. Calc. Appl. Anal. 17, No 2 (2014), 361-370; ;; Herrmann, R., Towards a geometric interpretation of generalized fractional integrals - Erdelyi-Kober type integrals on RN, as an example, Fract. Calc. Appl. Anal, 17, 2, 361-370 (2014) · Zbl 1305.26019 · doi:10.2478/s13540-014-0174-4
[11] N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta45, No 5 (2006), 765-772.; Heymans, N.; Podlubny, I., Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheologica Acta, 45, 5, 765-772 (2006)
[12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).; Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006) · Zbl 1092.45003
[13] V. Kiryakova, “A long standing conjecture failes?”. In: P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods and Special Functions, Varna 1996, Proc. of 3rd Internat. Workshop, Institute of Mathematics and Inform., Bulgarian Acad. of Sciences, Sofia (1998), 579-588.; Kiryakova, V.; Rusev, P.; Dimovski, I.; Kiryakova, V., Transform Methods and Special Functions, Varna 1996, 579-588 (1998)
[14] V. Kiryakova, Generalized Fractional Calculus and Applications. Longman, Harlow and Wiley, New York (1994).; Kiryakova, V., Generalized Fractional Calculus and Applications (1994) · Zbl 0882.26003
[15] A. Kiselev, The twelve lectures in the (non)commutative geometry of differential equations. Preprint IHES/M/12/13, Institut des hautes etudes scientifiques, Bures-sur-Yvette (2012), 141 p.; at .; Kiselev, A., Preprint IHES/M/12/13, 141 (2012)
[16] V.A. Kotel’nikov, On the transmission capacity of ’ether’ and wire in electric communications. Physics-Uspekhi46, No 7 (2006), 736-744.; Kotel’nikov, V. A., On the transmission capacity of ’ether’ and wire in electric communications, Physics-Uspekhi, 46, 7, 736-744 (2006)
[17] A.V. Letnikov, On the historical development of the theory of differentiation with arbitrary index. Sbornik Mathematics (Matematicheskii Sbornik)3, No 2 (1868), 85-112 [in Russian]; at .; Letnikov, A. V., On the historical development of the theory of differentiation with arbitrary index, Sbornik Mathematics (Matematicheskii Sbornik), 3, 2, 85-112 (1868)
[18] F. Mainardi, Considerations on fractional calculus: Interpretations and applications. In: P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Trans-form Methods and Special Functions, Varna 1996. Proc. of 3rd Internat. Workshop, Institute of Mathematics and Inform., Bulgarian Acad. of Sciences, Sofia (1998), 594-597.; Mainardi, F.; Rusev, P.; Dimovski, I.; Kiryakova, V., Trans-form Methods and Special Functions, Varna 1996, 594-597 (1998)
[19] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion- wave phenomena. Chaos, Solitons, Fractals7, No 9 (1996), 1461-1477.; Mainardi, F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons, Fractals, 7, 9, 1461-1477 (1996) · Zbl 1080.26505
[20] J. McNamee, F. Stenger, E.L. Whitney, Whittaker’s cardinal function in retrospect. Mathematics of Computation25 (1971), 141-154.; McNamee, J.; Stenger, F.; Whitney, E. L., Whittaker’s cardinal function in retrospect, Mathematics of Computation, 25, 141-154 (1971) · Zbl 0216.48502
[21] F.J. Molz, G.J. Fix, S. Lu, A physical interpretation for the fractional derivatives in Levy diffusion. Appl. Math. Letters15 (2002), 907-911.; Molz, F. J.; Fix, G. J.; Lu, S., A physical interpretation for the fractional derivatives in Levy diffusion, Appl. Math. Letters, 15, 907-911 (2002) · Zbl 1043.76056
[22] M. Moshrefi-Torbati, J.K. Hammond, Physical and geometrical interpretation of fractional operators. J. of the Franklin Institute335, No 6 (1998), 1077-1086.; Moshrefi-Torbati, M., J.K. Hammond, Physical and geometrical interpretation of fractional operators, J. of the Franklin Institute, 335, 6, 1077-1086 (1998) · Zbl 0989.26004
[23] R.R. Nigmatullin, A fractional integral and its physical interpretation. Theor. Math. Phys. 90, No 3 (1992), 242-251.; Nigmatullin, R. R., A fractional integral and its physical interpretation, Theor. Math. Phys, 90, 3, 242-251 (1992) · Zbl 0795.26007
[24] P.J. Olver, Equivalence, Invariants and Symmetry. Cambridge University Press, Cambridge (1995).; Olver, P. J., Equivalence, Invariants and Symmetry (1995) · Zbl 0837.58001
[25] M.D. Ortigueira, J.A. Tenreiro Machado, What is a fractional deriva-tive? J. Comp. Phys. 293 (2015), 4-13.; Ortigueira, M. D.; Tenreiro Machado, J. A., What is a fractional deriva-tive?, J. Comp. Phys, 293, 4-13 (2015) · Zbl 1349.26016
[26] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1998).; Podlubny, I., Fractional Differential Equations (1998) · Zbl 0922.45001
[27] I. Podlubny, Geometrical and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, No 4 (2002), 367-386; and arXiv:math/0110241.; Podlubny, I., Geometrical and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal, 5, 4, 367-386 (2002) · Zbl 1042.26003
[28] I. Podlubny, V. Despotovic, T. Skovranek, B.H. McNaughton, Shadows on the walls: Geometric interpretation of fractional integration. The J. of Online Mathematics and Its Applications7 (2007), Article ID 1664.; Podlubny, I.; Despotovic, V.; Skovranek, T.; McNaughton, B. H., Shadows on the walls: Geometric interpretation of fractional integration, The J. of Online Mathematics and Its Applications, 7 (2007)
[29] K. Rektorys, Survey of Applicable Mathematics. Second Ed., Springer, New York (1994).; Rektorys, K., Survey of Applicable Mathematics (1994) · Zbl 0805.00002
[30] R.S. Rutman, On physical interpretations of fractional integration and differentiation. Theor. Math. Phys. 105, No 3 (1995), 1509-1519.; Rutman, R. S., On physical interpretations of fractional integration and differentiation, Theor. Math. Phys, 105, 3, 1509-1519 (1995) · Zbl 0897.26002
[31] R.S. Rutman, On the paper by R.R. Nigmatullin “A fractional integral and its physical interpretation”. Theor. Math. Phys. 100, No 3 (1994), 1154-1156.; Rutman, R. S.; Nigmatullin, R. R., “A fractional integral and its physical interpretation”, Theor. Math. Phys, 100, 3, 1154-1156 (1994) · Zbl 0871.26009
[32] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993).; Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives Theory and Applications (1993) · Zbl 0818.26003
[33] G. Sardanashvily, Advanced Differential Geometry for Theoreticians: Fiber Bundles, Jet Manifolds and Lagrangian Theory. Lambert Aca-demic Publishing, Saarbrücken (2013); arXiv: 0908.1886.; Sardanashvily, G., Advanced Differential Geometry for Theoreticians: Fiber Bundles, Jet Manifolds and Lagrangian Theory (2013)
[34] G. Sardanashvily, Fibre Bundles, Jet Manifolds and Lagrangian Theory. Lectures for Theoreticians; arXiv: 0908.1886v2, 158 p.; Sardanashvily, G., Fibre Bundles, Jet Manifolds and Lagrangian Theory. Lectures for Theoreticians
[35] D.J. Saunders, The Geometry of Jet Bundles. Cambridge University Press, Cambridge (1989); Saunders, D. J., The Geometry of Jet Bundles (1989) · Zbl 0665.58002
[36] C.E. Shannon, Communication in the presence of noise. Proc. of the IEEE86, No 2 (1998), 447-457.; Shannon, C. E., Communication in the presence of noise, Proc. of the IEEE, 86, 2 (1998)
[37] A.A. Stanislavsky, Probability interpretation of the integral of fractional order. Theor. Math. Phys. 138, No 3 (2004), 418-431.; Stanislavsky, A. A., Probability interpretation of the integral of fractional order, Theor. Math. Phys, 138, 3, 418-431 (2004) · Zbl 1178.26008
[38] F. Stenger, Handbook of Sinc Numerical Methods. CRC Press, Taylor and Francis, Boca Raton, London, New York (2011).; Stenger, F., Handbook of Sinc Numerical Methods (2011) · Zbl 1208.65143
[39] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions. Springer-Verlag, New York (1993).; Stenger, F., Numerical Methods Based on Sinc and Analytic Functions (1993) · Zbl 0803.65141
[40] V.E. Tarasov, Fractional vector calculus and fractional Maxwell’s equa-tions. Annals of Physics323, No 11 (2008), 2756-2778.; Tarasov, V. E., Fractional vector calculus and fractional Maxwell’s equa-tions, Annals of Physics, 323, 11, 2756-2778 (2008) · Zbl 1180.78003
[41] V.E. Tarasov, Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. Fundamenta Informaticae (2016), Accepted.; Tarasov, V. E., Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives, Fundamenta Informaticae (2016) · Zbl 1376.26009
[42] V.E. Tarasov, Lattice fractional calculus. Appl. Math, and Comput. 257 (2015), 12-33.; Tarasov, V. E., Lattice fractional calculus, Appl. Math, and Comput, 257, 12-33 (2015) · Zbl 1338.82037
[43] V.E. Tarasov, Leibniz rule and fractional derivatives of power func-tions. J. Comp. Nonl. Dyn. 11, No 3 (2016), 031014.; Tarasov, V. E., Leibniz rule and fractional derivatives of power func-tions, J. Comp. Nonl. Dyn, 11, 3, 031014 (2016)
[44] V.E. Tarasov, No violation of the Leibniz rule. No fractional derivative. Comm. Nonlin. Sci. Num. Sim. 18, No 11 (2013), 2945-2948.; Tarasov, V. E., No violation of the Leibniz rule. No fractional derivative, Comm. Nonlin. Sci. Num. Sim, 18, 11, 2945-2948 (2013) · Zbl 1329.26015
[45] V.E. Tarasov, On chain rule for fractional derivatives. Comm. Nonlin. Sci. Num. Sim. 30, No 1-3 (2016), 1-4.; Tarasov, V. E., On chain rule for fractional derivatives, Comm. Nonlin. Sci. Num. Sim, 30, 1-3, 1-4 (2016) · Zbl 1489.26011
[46] V.E. Tarasov, Remark to history of fractional derivatives on complex plane: Sonine-Letnikov and Nishimoto derivatives. Fractional Differential Calculus6, No 1 (2016), 147-149.; Tarasov, V. E., Remark to history of fractional derivatives on complex plane: Sonine-Letnikov and Nishimoto derivatives, Fractional Differential Calculus, 6, 1, 147-149 (2016) · Zbl 1424.26001
[47] V.E. Tarasov, United lattice fractional integro-differentiation. Fract. Calc. Appl. Anal. 19, No 3 (2016), 625-664; ; .; Tarasov, V. E., United lattice fractional integro-differentiation, Fract. Calc. Appl. Anal, 19, 3, 625-664 (2016) · Zbl 1345.26016 · doi:10.1515/fca-2016-0034
[48] V.V. Tarasova, V.E. Tarasov, Economic interpretation of fractional derivatives. Progr. Fract. Differ. Appl. (2016), Submitted.; Tarasova, V. V.; Tarasov, V. E., Progr. Fract. Differ. Appl (2016) · Zbl 1438.91059
[49] V.V. Tarasova, V.E. Tarasov, Elasticity for economic processes with memory: Fractional differential calculus approach. Fractional Differential Calculus6, No 2 (2016), 219-232.; Tarasova, V. V.; Tarasov, V. E., Elasticity for economic processes with memory: Fractional differential calculus approach, Fractional Differential Calculus, 6, 2, 219-232 (2016) · Zbl 1438.91059
[50] V.V. Tarasova, V.E. Tarasov, Marginal utility for economical processes with memory. Almanac of Modern Science and Education (Almanah Sovremennoj Nauki i Obrazovaniya)7 (2016), 108-113 [in Russian]; at .; Tarasova, V. V.; Tarasov, V. E., Marginal utility for economical processes with memory, Almanac of Modern Science and Education (Almanah Sovremennoj Nauki i Obrazovaniya), 7, 108-113 (2016)
[51] F.B. Tatom, The relationship between fractional calculus and fractals. Fractals3, No 1 (1995), 217-229.; Tatom, F. B., The relationship between fractional calculus and fractals, Fractals, 3, 1, 217-229 (1995) · Zbl 0877.28009
[52] M.H. Tavassoli, A. Tavassoli, M.R. Ostad Rahimi, The geometric and physical interpretation of fractional order derivatives of polynomial functions. Differential Geom.-Dynamical Systems15 (2013), 93-104.; Tavassoli, M. H.; Tavassoli, A.; Ostad Rahimi, M. R., The geometric and physical interpretation of fractional order derivatives of polynomial functions, Differential Geom.-Dynamical Systems, 15, 93-104 (2013) · Zbl 1488.26027
[53] J.A. Tenreiro Machado, A probabilistic interpretation of the fractional- order differentiation. Fract. Calc. Appl. Anal. 6, No 1 (2003), 73-80.; Tenreiro Machado, J. A., A probabilistic interpretation of the fractional-order differentiation, Fract. Calc. Appl. Anal, 6, 1, 73-80 (2003) · Zbl 1035.26010
[54] J.A. Tenreiro Machado, Fractional derivatives: Probability interpretation and frequency response of rational approximations. Comm. Nonlin. Sci. Num. Sim. 14, No 9-10 (2009), 3492-3497.; Tenreiro Machado, J. A., Fractional derivatives: Probability interpretation and frequency response of rational approximations, Comm. Nonlin. Sci. Num. Sim, 14, 9-10, 3492-3497 (2009)
[55] J.A. Tenreiro Machado, A.M. Galhano, J.J. Trujillo, Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal. 16, No 2 (2013), 479-500; ; .; Tenreiro Machado, J. A.; Galhano, A. M.; Trujillo, J. J., Science metrics on fractional calculus development since 1966, Fract. Calc. Appl. Anal, 16, 2, 479-500 (2013) · Zbl 1312.26004 · doi:10.2478/s13540-013-0030-y
[56] J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Comm. Nonlin. Sci. Num. Sim. 16, No 3 (2011), 1140-1153.; Tenreiro Machado, J.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Comm. Nonlin. Sci. Num. Sim, 16, 3, 1140-1153 (2011) · Zbl 1221.26002
[57] E.T. Whittaker, On the functions which are represented by the expansions of the interpolation-theory. Proc. of the Royal Soc. Edinburgh35 (1915), 181-194.; Whittaker, E. T., On the functions which are represented by the expansions of the interpolation-theory, Proc. of the Royal Soc. Edinburgh, 35, 181-194 (1915) · JFM 45.1275.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.