×

Infinite families of non-monogenic trinomials. (English) Zbl 1488.11163

Summary: Let \(f(x) \in \mathbb{Z}[x]\) be monic and irreducible over \(\mathbb{Q}\), with \(\deg (f) = n\). Let \(K = \mathbb{Q}(\vartheta)\), where \(f(\vartheta) = 0\), and let \(\mathbb{Z}_K\) denote the ring of integers of \(K\). We say \(f(x)\) is non-monogenic if \(\{1,\vartheta,\vartheta^2,\ldots,\vartheta^{n-1}\}\) is not a basis for \(\mathbb{Z}_K\). By extending ideas of L. J. Ratliff jun. et al. [J. Number Theory 121, No. 1, 90–113 (2006; Zbl 1171.12002)] we construct infinite families of non-monogenic trinomials.

MSC:

11R04 Algebraic numbers; rings of algebraic integers
11R09 Polynomials (irreducibility, etc.)
12F05 Algebraic field extensions

Citations:

Zbl 1171.12002
Full Text: DOI

References:

[1] Ahmad, S.; Nakahara, T.; Hameed, A., On certain pure sextic fields related to a problem of Hasse, Internat. J. Algebra Comput., 26, 577-583 (2016) · Zbl 1404.11124 · doi:10.1142/S0218196716500259
[2] Ahmad, S.; Nakahara, T.; Husnine, S. M., Power integral bases for certain pure sextic fields, Int. J. Number Theory, 10, 2257-2265 (2014) · Zbl 1316.11094 · doi:10.1142/S1793042114500778
[3] Boyd, D. W.; Martin, G.; Thom, M., Squarefree values of trinomial discriminants, LMS J. Comput. Math., 18, 148-169 (2015) · Zbl 1329.11103 · doi:10.1112/S1461157014000436
[4] Cohen, H., A Course in Computational Algebraic Number Theory (2000) · Zbl 0977.11056
[5] Evertse, J-H; Győry, K., Discriminant equations in Diophantine number theory (2017), Cambridge: Cambridge University Press, Cambridge · Zbl 1361.11002 · doi:10.1017/CBO9781316160763
[6] Eloff, D.; Spearman, B.; Williams, K., A4-sextic fields with a power basis, Missouri J. Math. Sciences, 19, 188-194 (2007) · Zbl 1229.11136 · doi:10.35834/mjms/1316032976
[7] Gaál, I., Diophantine equations and power integral base. Theory and algorithms (2019), Cham: Birkhäuser/Springer, Cham · Zbl 1465.11090 · doi:10.1007/978-3-030-23865-0
[8] Gaál, I.; Remete, L., Power integral bases in a family of sextic fields with quadratic subfields, Tatra Mt. Math. Publ., 64, 59-66 (2015) · Zbl 1393.11068
[9] Gaál, I.; Remete, L., Integral bases and monogenity of pure fields, J. Number Theory, 173, 129-146 (2017) · Zbl 1419.11118 · doi:10.1016/j.jnt.2016.09.009
[10] Harrington, J., On the factorization of the trinomials x^n + cx^n−1 + d, Int. J. Number Theory, 8, 1513-1518 (2012) · Zbl 1293.12003 · doi:10.1142/S179304211250090X
[11] Harrington, J.; Jones, L., Monogenic binomial compositions, Taiwanese J. Math., 24, 1073-1090 (2020) · Zbl 1467.11099 · doi:10.11650/tjm/200201
[12] J. Harrington and L. Jones, Monogenic cyclotomic compositions, Kodai Math. J., to appear. · Zbl 1477.11181
[13] Jakhar, A.; Khanduja, S.; Sangwan, N., On prime divisors of the index of an algebraic integer, J. Number Theory, 166, 47-61 (2016) · Zbl 1414.11124 · doi:10.1016/j.jnt.2016.02.021
[14] Jakhar, A.; Khanduja, S.; Sangwan, N., Characterization of primes dividing the index of a trinomial, Int. J. Number Theory, 13, 2505-2514 (2017) · Zbl 1431.11116 · doi:10.1142/S1793042117501391
[15] Jones, L., A brief note on some infinite families of monogenic polynomials, Bull. Aust. Math. Soc., 100, 239-244 (2019) · Zbl 1461.11138 · doi:10.1017/S0004972719000182
[16] Jones, L., Monogenic polynomials with non-squarefree discriminant, Proc. Amer. Math. Soc., 148, 1527-1533 (2020) · Zbl 1436.11125 · doi:10.1090/proc/14858
[17] Jones, L., Generating infinite families of monogenic polynomials using a new discriminant formula, Albanian J. Math., 14, 37-45 (2020) · Zbl 1441.11268 · doi:10.51286/albjm/1608313765
[18] Jones, L., Some new infinite families of monogenic polynomials with non-squarefree discriminant, Acta Arith., 197, 213-219 (2021) · Zbl 1465.11204 · doi:10.4064/aa200211-21-7
[19] Jones, L.; Phillips, T., Infinite families of monogenic trinomials and their Galois groups, Internat. J. Math., 29, 1850039 (2018) · Zbl 1423.11181 · doi:10.1142/S0129167X18500398
[20] Jones, L.; White, D., Monogenic trinomials with non-squarefree discriminant, arXiv (2019) · Zbl 1478.11125
[21] Kedlaya, K., A construction of polynomials with squarefree discriminants, Proc. Amer. Math. Soc., 140, 3025-3033 (2012) · Zbl 1301.11072 · doi:10.1090/S0002-9939-2012-11231-6
[22] Lavallee, M.; Spearman, B.; Yang, Q., PSL2, 7 septimic fields with a power basis, J. Théor. Nombres Bordeaux, 24, 369-375 (2012) · Zbl 1280.11062 · doi:10.5802/jtnb.801
[23] Lavallee, M.; Spearman, B.; Williams, K.; Yang, Q., Dihedral quintic fields with a power basis, Math. J. Okayama Univ., 47, 75-79 (2005) · Zbl 1161.11393
[24] Pasten, H., The ABC conjecture, arithmetic progressions of primes and squarefree values of polynomials at prime arguments, Int. J. Number Theory, 11, 721-737 (2015) · Zbl 1337.11065 · doi:10.1142/S1793042115500396
[25] Perron, O., Neue Kriterien für die Irreduzibilität algebraischer Gleichungen, J. Reine Angew. Math., 132, 288-307 (1907) · JFM 38.0118.02
[26] Ratliff, L. J.; Rush, D. E.; Shah, K., Power integral bases for Selmer-like number fields, J. Number Theory, 121, 90-113 (2006) · Zbl 1171.12002 · doi:10.1016/j.jnt.2006.01.012
[27] Selmer, E., On the irreducibility of certain trinomials, Math. Scand., 4, 287-302 (1956) · Zbl 0077.24602 · doi:10.7146/math.scand.a-10478
[28] Spearman, B., Monogenic A4 quartic fields, Int. Math. Forum, 1, 1969-1974 (2006) · Zbl 1190.11057 · doi:10.12988/imf.2006.06174
[29] Spearman, B.; Watanabe, A.; Williams, K., PSL2, 5 sextic fields with a power basis, Kodai Math. J., 29, 5-12 (2006) · Zbl 1096.11038 · doi:10.2996/kmj/1143122382
[30] Spearman, B.; Williams, K., Cubic fields with a power basis, Rocky Mountain J. Math., 31, 1103-1109 (2001) · Zbl 0992.11059 · doi:10.1216/rmjm/1020171683
[31] Swan, R., Factorization of polynomials over finite fields, Pacific J. Math., 12, 1099-1106 (1962) · Zbl 0113.01701 · doi:10.2140/pjm.1962.12.1099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.