×

A diagonal recurrence relation for the Stirling numbers of the first kind. (English) Zbl 1488.11060

Summary: In the paper, the authors present an explicit form for a family of inhomogeneous linear ordinary differential equations, find a more significant expression for all derivatives of a function related to the solution to the family of inhomogeneous linear ordinary differential equations in terms of the Lerch transcendent, establish an explicit formula for computing all derivatives of the solution to the family of inhomogeneous linear ordinary differential equations, acquire the absolute monotonicity, complete monotonicity, the Bernstein function property of several functions related to the solution to the family of inhomogeneous linear ordinary differential equations, discover a diagonal recurrence relation of the Stirling numbers of the first kind, and derive an inequality for bounding the logarithmic function.

MSC:

11B73 Bell and Stirling numbers
11M35 Hurwitz and Lerch zeta functions
44A10 Laplace transform

Software:

DLMF
Full Text: DOI

References:

[1] N. Bourbaki, Functions of a Real Variable, Elementary Theory, Translated from the 1976 French original by Philip Spain. Elements of Mathematics (Berlin). · Zbl 0346.26003
[2] Springer-Verlag, Berlin, 2004; Available online at https://doi.org/10.1007/ 978-3-642-59315-4. · doi:10.1007/978-3-642-59315-4
[3] N. D. Cahill, J. R. D’Errico, D. A. Narayan, and J. Y. Narayan, Fibonacci determi-nants, College Math. J. 3 (2002), 221-225; Available online at https://doi.org/10. 2307/1559033. · Zbl 1046.11007 · doi:10.2307/1559033
[4] W. Cheney and W. Light, A Course in Approximation Theory, Reprint of the 2000 original, Graduate Studies in Mathematics, Volume 101, American Mathematical Society, Providence, RI, 2009; Available online at https://doi.org/10.1090/gsm/ 101. · Zbl 1167.41001 · doi:10.1090/gsm/101
[5] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Re-vised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974. · Zbl 0283.05001
[6] B.-N. Guo and F. Qi, A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72 (2010), no. 2, 21-30. · Zbl 1299.26022
[7] S. Hu and M.-S. Kim, Two closed forms for the Apostol-Bernoulli polynomials, arXiv preprint (2015), available online at http://arxiv.org/abs/1509.04190.
[8] T. Kim and D. S. Kim, Differential equations associated with Catalan-Daehee num-bers and their applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RAC-SAM 111 (2017), no. 4, 1071-1081; Available online at https://doi.org/10.1007/ s13398-016-0349-4. · Zbl 1373.05023 · doi:10.1007/s13398-016-0349-4
[9] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993; Available online at https://doi.org/ 10.1007/978-94-017-1043-5. · Zbl 0771.26009 · doi:10.1007/978-94-017-1043-5
[10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010; Available online at http://dlmf.nist.gov/. · Zbl 1198.00002
[11] F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput. 268 (2015), 844-858; Available online at https://doi.org/10.1016/j.amc.2015.06.123. · Zbl 1410.11018 · doi:10.1016/j.amc.2015.06.123
[12] F. Qi, Diagonal recurrence relations for the Stirling numbers of the first kind, Contrib. Discrete Math. 11 (2016), 22-30; Available online at http://hdl.handle.net/10515/ sy5wh2dx6 and https://doi.org/10515/sy5wh2dx6. · Zbl 1360.11051
[13] F. Qi, Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind, Math. Inequal. Appl. 19 (2016), no. 1, 313-323; · Zbl 1333.11027
[14] Available online at https://doi.org/10.7153/mia-19-23. · Zbl 1333.11027 · doi:10.7153/mia-19-23
[15] F. Qi, Integral representations and properties of Stirling numbers of the first kind, J. Number Theory 133 (2013), no. 7, 2307-2319; Available online at https://doi.org/ 10.1016/j.jnt.2012.12.015. · Zbl 1336.11022 · doi:10.1016/j.jnt.2012.12.015
[16] F. Qi, V.Čerňanová, and Y. S. Semenov, On tridiagonal determinants and the Cauchy product of central Delannoy numbers, ResearchGate Working Paper (2016), available online at https://doi.org/10.13140/RG.2.1.3772.6967. · doi:10.13140/RG.2.1.3772.6967
[17] F. Qi and R. J. Chapman, Two closed forms for the Bernoulli polynomials, J. Number Theory 159 (2016), 89-100; Available online at https://doi.org/10.1016/j.jnt. 2015.07.021. · Zbl 1400.11070 · doi:10.1016/j.jnt.2015.07.021
[18] F. Qi and B.-N. Guo, A determinantal expression and a recurrence relation for the Euler polynomials, Adv. Appl. Math. Sci. 16 (2017), no. 9, 297-309.
[19] F. Qi and B.-N. Guo, Explicit and recursive formulas, integral representations, and properties of the large Schröder numbers, Kragujevac J. Math. 41 (2017), no. 1, 121-141. · Zbl 1488.11069
[20] F. Qi and B.-N. Guo, Expressing the generalized Fibonacci polynomials in terms of a tridiagonal determinant, Matematiche (Catania) 72 (2017), no. 1, 167-175; Available online at https://doi.org/10.4418/2017.72.1.13. · Zbl 1432.11014 · doi:10.4418/2017.72.1.13
[21] F. Qi and B.-N. Guo, Some determinantal expressions and recurrence relations of the Bernoulli polynomials, Mathematics 4 (2016), no. 4, Article 65, 11 pages; Available online at https://doi.org/10.3390/math4040065. · Zbl 1375.11021 · doi:10.3390/math4040065
[22] F. Qi and B.-N. Guo, Some properties of a solution to a family of inhomogeneous linear ordinary differential equations, Preprints 2016, 2016110146, 11 pages; Available online at https://doi.org/10.20944/preprints201611.0146.v1. · doi:10.20944/preprints201611.0146.v1
[23] F. Qi and B.-N. Guo, Two nice determinantal expressions and a recurrence relation for the Apostol-Bernoulli polynomials, J. Indones. Math. Soc. 23 (2017), no. 1, 81-87; · Zbl 1460.11028
[24] Available online at https://doi.org/10.22342/jims.23.1.274.81-87. · Zbl 1460.11028 · doi:10.22342/jims.23.1.274.81-87
[25] F. Qi and W.-H. Li, Integral representations and properties of some functions involving the logarithmic function, Filomat 30 (2016), no. 7, 1659-1674; Available online at https://doi.org/10.2298/FIL1607659Q. · Zbl 1474.30251 · doi:10.2298/FIL1607659Q
[26] F. Qi, M. Mahmoud, X.-T. Shi, and F.-F. Liu, Some properties of the Catalan-Qi func-tion related to the Catalan numbers, SpringerPlus (2016), 5:1126, 20 pages; Available online at https://doi.org/10.1186/s40064-016-2793-1. · doi:10.1186/s40064-016-2793-1
[27] F. Qi, X.-T. Shi, and B.-N. Guo, Two explicit formulas of the Schröder numbers, Integers 16 (2016), Paper No. A23, 15 pages. · Zbl 1351.05021
[28] F. Qi, X.-T. Shi, F.-F. Liu, and D. V. Kruchinin, Several formulas for special values of the Bell polynomials of the second kind and applications, J. Appl. Anal. Comput. 7 (2017), no. 3, 857-871; Available online at https://doi.org/10.11948/2017054. · Zbl 1474.05006 · doi:10.11948/2017054
[29] F. Qi, J.-L. Wang, and B.-N. Guo, A recovery of two determinantal representations for derangement numbers, Cogent Math. (2016), 3: 1232878, 7 pages; Available online at https://doi.org/10.1080/23311835.2016.1232878. · Zbl 1438.11052 · doi:10.1080/23311835.2016.1232878
[30] F. Qi, J.-L. Zhao, and B.-N. Guo, Closed forms for derangement numbers in terms of the Hessenberg determinants, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112 (2018), in press; Available online at http://dx.doi.org/10.1007/ s13398-017-0401-z. · Zbl 1401.05017 · doi:10.1007/s13398-017-0401-z
[31] R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions-Theory and Appli-cations, 2nd ed., de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, Germany, 2012; Available online at https://doi.org/10.1515/9783110269338. · Zbl 1257.33001 · doi:10.1515/9783110269338
[32] C.-F. Wei and F. Qi, Several closed expressions for the Euler numbers, J. Inequal. Appl. 2015, 2015:219, 8 pages; Available online at https://doi.org/10.1186/ s13660-015-0738-9. · Zbl 1366.11052 · doi:10.1186/s13660-015-0738-9
[33] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946. · JFM 67.0384.01
[34] A.-M. Xu and G.-D. Cen, Closed formulas for computing higher-order derivatives of functions involving exponential functions, Appl. Math. Comput. 270 (2015), 136-141; · Zbl 1410.33002
[35] Available online at http://dx.doi.org/10.1016/j.amc.2015.08.051. · Zbl 1410.33002 · doi:10.1016/j.amc.2015.08.051
[36] A.-M. Xu and Z.-D. Cen, Some identities involving exponential functions and Stirling numbers and applications, J. Comput. Appl. Math. 260 (2014), 201-207; Available online at http://dx.doi.org/10.1016/j.cam.2013.09.077. · Zbl 1293.05011 · doi:10.1016/j.cam.2013.09.077
[37] Feng Qi (Received 05.04.2017) Institute of Mathematics (Revised 01.10.2017)
[38] China E-mail: qifeng618@gmail.com qifeng618@hotmail.com qifeng618@qq.com URL: https://qifeng618.wordpress.com
[39] Bai-Ni Guo School of Mathematics and Informatics Henan Polytechnic University Jiaozuo City, 454010
[40] Henan Province China E-mail: bai.ni.guo@gmail.com bai.ni.guo@hotmail.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.