×

Integral representations and properties of Stirling numbers of the first kind. (English) Zbl 1336.11022

The paper gives 3 integral representations for the Stirling numbers of the first kind. One of the consequences is the non-negativity of an \(m\times m\) determinant that involves Stirling numbers of the first kind. It is also shown that for every fixed \(k\), the sequence \(s(n+k,k){\binom{n+k}{k}}^{-1}\) is logconvex.

MSC:

11B73 Bell and Stirling numbers
11B83 Special sequences and polynomials
05A10 Factorials, binomial coefficients, combinatorial functions
Full Text: DOI

References:

[1] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Natl. Bur. Stand., Appl. Math. Ser., vol. 55 (1970), US Government Printing Office: US Government Printing Office Washington) · Zbl 0171.38503
[2] Adamchik, V., On Stirling numbers and Euler sums, J. Comput. Appl. Math., 79, 1, 119-130 (1997), available online at · Zbl 0877.39001
[3] Agoh, T.; Dilcher, K., Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind, Fibonacci Quart., 48, 1, 4-12 (2010) · Zbl 1222.11030
[4] DeFranco, M., On the analytic extension of Stirling numbers of the first kind, J. Difference Equ. Appl., 16, 9, 1101-1120 (2010), available online at · Zbl 1226.11029
[5] El-Desouky, B. S., Generalized Stirling numbers of the first kind: modified approach, J. Pure Appl. Math. Adv. Appl., 5, 1, 43-59 (2011) · Zbl 1321.11029
[6] Fink, A. M., Kolmogorov-Landau inequalities for monotone functions, J. Math. Anal. Appl., 90, 1, 251-258 (1982), available online at · Zbl 0503.26010
[7] Guo, B.-N.; Qi, F., A simple proof of logarithmic convexity of extended mean values, Numer. Algorithms, 52, 1, 89-92 (2009), available online at · Zbl 1184.26028
[8] Guo, B.-N.; Qi, F., Properties and applications of a function involving exponential functions, Commun. Pure Appl. Anal., 8, 4, 1231-1249 (2009), available online at · Zbl 1179.33001
[9] Guo, B.-N.; Qi, F., The function \((b^x - a^x) / x\): Logarithmic convexity and applications to extended mean values, Filomat, 25, 4, 63-73 (2011), available online at · Zbl 1265.26029
[10] Guo, B.-N.; Qi, F., The function \((b^x - a^x) / x\): Ratioʼs properties, available online at
[11] Howard, F., Congruences and recurrences for Bernoulli numbers of higher order, Fibonacci Quart., 32, 4, 316-328 (1994) · Zbl 0820.11009
[12] Jordan, C., Calculus of Finite Differences (1965), Chelsea: Chelsea New York · Zbl 0154.33901
[13] Katriel, J., A multitude of expressions for the Stirling numbers of the first kind, Integers, 10, 273-297 (2010), A23, available online at · Zbl 1246.11060
[14] Konvalina, J., A unified interpretation of the binomial coefficients, the Stirling numbers, and the Gaussian coefficients, Amer. Math. Monthly, 107, 10, 901-910 (2000), available online at · Zbl 0987.05004
[15] Lieb, E. H., Concavity properties and a generating function for Stirling numbers, J. Combin. Theory, 5, 2, 203-206 (1968), available online at · Zbl 0164.33002
[16] Liu, H.-M.; Qi, S.-H.; Ding, S.-Y., Some recurrence relations for Cauchy numbers of the first kind, J. Integer Seq., 13 (2010), Article 10.3.8 · Zbl 1210.11034
[17] Loeb, D. E., A generalization of the Stirling numbers, Discrete Math., 103, 3, 259-269 (1992), available online at · Zbl 0769.05005
[18] Louchard, G., Asymptotics of the Stirling numbers of the first kind revisited: a saddle point approach, Discrete Math. Theor. Comput. Sci., 12, 2, 167-184 (2010) · Zbl 1278.05018
[19] Luo, H.; Liu, G.-D., An identity involving Nörlund numbers and Stirling numbers of the first kind, Sci. Magna, 4, 2, 45-48 (2008) · Zbl 1199.11055
[20] Mitrinović, D. S.; Pečarić, J. E., On two-place completely monotonic functions, Anzeiger Öster. Akad. Wiss. Math.-Natturwiss. Kl., 126, 85-88 (1989) · Zbl 0704.26018
[21] Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M., Classical and New Inequalities in Analysis (1993), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht/Boston/London · Zbl 0771.26009
[22] Nemes, G., An asymptotic expansion for the Bernoulli numbers of the second kind, J. Integer Seq., 14 (2011), Article 11.4.8 · Zbl 1229.11037
[23] Qi, F., Logarithmic convexity of extended mean values, Proc. Amer. Math. Soc., 130, 6, 1787-1796 (2002), available online at · Zbl 0993.26012
[24] Qi, F., Bounds for the ratio of two gamma functions, J. Inequal. Appl., 2010 (2010), 84 pp., Article ID 493058, available online at · Zbl 1194.33005
[25] Qi, F., An integral representation and properties of Bernoulli numbers of the second kind, available online at
[26] Qi, F., Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind, available online at · Zbl 1385.11011
[27] Qi, F.; Cerone, P.; Dragomir, S. S.; Srivastava, H. M., Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values, Appl. Math. Comput., 208, 1, 129-133 (2009), available online at · Zbl 1160.26008
[28] Qi, F.; Cheng, J.-X., Some new Steffensen pairs, Anal. Math., 29, 3, 219-226 (2003), available online at · Zbl 1054.26021
[29] Qi, F.; Cheng, J.-X.; Wang, G., New Steffensen pairs, (Inequality Theory and Applications, vol. 1 (2001), Nova Science Publishers: Nova Science Publishers Huntington, NY), 273-279 · Zbl 1059.26020
[30] Qi, F.; Guo, B.-N., On Steffensen pairs, J. Math. Anal. Appl., 271, 2, 534-541 (2002), available online at · Zbl 1014.26019
[31] Qi, F.; Luo, Q.-M., Bounds for the ratio of two gamma functions—From Wendelʼs and related inequalities to logarithmically completely monotonic functions, Banach J. Math. Anal., 6, 2, 132-158 (2012) · Zbl 1245.33004
[32] Qi, F.; Xu, S.-L., Refinements and extensions of an inequality, II, J. Math. Anal. Appl., 211, 2, 616-620 (1997), available online at · Zbl 0932.26010
[33] Qi, F.; Xu, S.-L., The function \((b^x - a^x) / x\): Inequalities and properties, Proc. Amer. Math. Soc., 126, 11, 3355-3359 (1998), available online at · Zbl 0904.26006
[34] Qi, F.; Zhang, X.-J., A Stieltjes function involving the logarithmic function and an application, available online at
[35] Qi, F.; Zhang, X.-J.; Li, W.-H., A new proof of the geometric-arithmetic mean inequality by Cauchyʼs integral formula, available online at
[36] Qi, F.; Zhang, X.-J.; Li, W.-H., The geometric mean is a Bernstein function, available online at
[37] Sun, P., Product of uniform distribution and Stirling numbers of the first kind, Acta Math. Sin. (Engl. Ser.), 21, 6, 1435-1442 (2005), available online at · Zbl 1109.11016
[38] van Haeringen, H., Completely monotonic and related functions, J. Math. Anal. Appl., 204, 2, 389-408 (1996), available online at · Zbl 0889.26008
[39] Vega, M. A.R. P.; Corcino, C. B., An asymptotic formula for the generalized Stirling numbers of the first kind, Util. Math., 73, 129-141 (2007) · Zbl 1225.11029
[40] Vega, M. A.R. P.; Corcino, C. B., More asymptotic formulas for the generalized Stirling numbers of the first kind, Util. Math., 75, 259-272 (2008) · Zbl 1163.11016
[41] Weisstein, E. W., Stirling number of the first kind, available online at
[42] Wikipedia, Stirling numbers of the first kind, available online at http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind; Wikipedia, Stirling numbers of the first kind, available online at http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
[43] X.-J. Zhang, Integral Representations, Properties, and Applications of Three Classes of Functions, Thesis supervised by Professor Feng Qi and submitted for the Master Degree of Science at Tianjin Polytechnic University in January 2013 (in Chinese).; X.-J. Zhang, Integral Representations, Properties, and Applications of Three Classes of Functions, Thesis supervised by Professor Feng Qi and submitted for the Master Degree of Science at Tianjin Polytechnic University in January 2013 (in Chinese).
[44] Zhang, S.-Q.; Guo, B.-N.; Qi, F., A concise proof for properties of three functions involving the exponential function, Appl. Math. E-Notes, 9, 177-183 (2009) · Zbl 1175.26025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.