×

Nested integrals and rationalizing transformations. (English) Zbl 1487.68257

Bluemlein, Johannes (ed.) et al., Anti-differentiation and the calculation of Feynman amplitudes. Selected papers based on the presentations at the conference, Zeuthen, Germany, October 2020. Cham: Springer. Texts Monogr. Symb. Comput., 395-422 (2021).
In this paper, the author provides an overview of some important computer algebra methods for computations with nested integrals over integrands involving square roots. In particular, rewrite rules are analyzed for conversion to and from associated nested sums. In addition, the author compares the holonomic systems approach and the differential field approach. In order to simplify rational integrands, the author provides a comprehensive list of univariate rationalizing transformations, including transformations tuned to map the interval \([0,1]\) bijectively to itself.
For the entire collection see [Zbl 1475.81004].

MSC:

68W30 Symbolic computation and algebraic computation
12H05 Differential algebra
33F10 Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.)
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81T18 Feynman diagrams

Software:

HarmonicSums

References:

[1] C.G. Raab, G. Regensburger, The fundamental theorem of calculus in differential rings. In preparation · Zbl 07849766
[2] E.E. Kummer, Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen. J. Reine Angew. Math. 21, 74-90, 193-225, 328-371 (1840) · ERAM 021.0671cj
[3] M. Besier, P. Wasser, S. Weinzierl, RationalizeRoots: software package for the rationalization of square roots. Comput. Phys. Commun. 253, Article 107197 (2020) [arXiv:1910.13251] · Zbl 1535.65031 · doi:10.1016/j.cpc.2020.107197
[4] J. Ablinger, A computer algebra toolbox for harmonic sums related to particle physics. Diploma Thesis, Johannes Kepler Univ. Linz, 2009 [arXiv:1011.1176]
[5] J. Ablinger, Computer algebra algorithms for special functions in particle physics. PhD Thesis, Johannes Kepler Univ. Linz, 2012 [arXiv:1305.0687]
[6] J. Ablinger, The package HarmonicSums: computer algebra and analytic aspects of nested sums. PoS LL2014, 019 (2014) [arXiv:1407.6180]
[7] J. Ablinger, Inverse Mellin transform of holonomic sequences. PoS LL2016, 067 (2016) [arXiv:1606.02845]
[8] J. Ablinger, Discovering and proving infinite binomial sums identities. Exp. Math. 26, 62-71 (2017) [arXiv:1507.01703] · Zbl 1365.05009 · doi:10.1080/10586458.2015.1116028
[9] J. Ablinger, An improved method to compute the inverse Mellin transform of holonomic sequences. PoS LL2018, 063 (2018)
[10] J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.-S. Radu, C. Schneider, Iterated elliptic and hypergeometric integrals for Feynman diagrams. J. Math. Phys. 59, Article 062305 (2018) [arXiv:1706.01299] · Zbl 1394.81164 · doi:10.1063/1.4986417
[11] J. Ablinger, J. Blümlein, C.G. Raab, C. Schneider, Iterated binomial sums and their associated iterated integrals. J. Math. Phys. 55, Article 112301 (2014) [arXiv:1407.1822] · Zbl 1306.81141 · doi:10.1063/1.4900836
[12] J. Ablinger, J. Blümlein, C.G. Raab, C. Schneider, F. Wißbrock, Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms. Nucl. Phys. B 885, 409-447 (2014) [arXiv:1403.1137] · Zbl 1323.81097 · doi:10.1016/j.nuclphysb.2014.04.007
[13] J. Ablinger, J. Blümlein, C. Schneider, Harmonic sums and polylogarithms generated by cyclotomic polynomials. J. Math. Phys. 52, Article 102301 (2011) [arXiv:1105.6063] · Zbl 1272.81127 · doi:10.1063/1.3629472
[14] J. Ablinger, J. Blümlein, C. Schneider, Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms. J. Math. Phys. 54, Article 082301 (2013). [arXiv:1302.0378] · Zbl 1295.81071 · doi:10.1063/1.4811117
[15] S.A. Abramov, M. Petkovšek, D’Alembertian solutions of linear differential and difference equations, in Proc. ISSAC’94(1994), pp. 169-174 · Zbl 0919.34013
[16] U. Aglietti, R. Bonciani, Master integrals with 2 and 3 massive propagators for the 2-loop electroweak form factor—planar case. Nucl. Phys. B 698, 277-318 (2004) [arXiv:hep-ph/0401193] · Zbl 1123.81387 · doi:10.1016/j.nuclphysb.2004.07.018
[17] M. Besier, D. van Straten, S. Weinzierl, Rationalizing roots: an algorithmic approach. Commun. Number Theory Phys. 13, 253-297 (2019) [arXiv:1809.10983] · Zbl 1414.81116 · doi:10.4310/CNTP.2019.v13.n2.a1
[18] J. Blümlein, A. De Freitas, C.G. Raab, K. Schönwald, The unpolarized two-loop massive pure singlet Wilson coefficients for deep-inelastic scattering. Nucl. Phys. B 945, Article 114659 (2019) [arXiv:1903.06155] · Zbl 1437.81129 · doi:10.1016/j.nuclphysb.2019.114659
[19] J. Blümlein, A. De Freitas, C.G. Raab, K. Schönwald, The \(O(α^2)\) initial state QED corrections to \(e^+e^−\)→ \(γ^∗\)∕\(Z^∗\). Nucl. Phys. B 956, Article 115055 (2020) [arXiv:2003.14289] · Zbl 1473.81217 · doi:10.1016/j.nuclphysb.2020.115055
[20] S.T. Boettner, Mixed transcendental and algebraic extensions for the Risch-Norman algorithm. PhD Thesis, Tulane University, New Orleans, 2010
[21] A. Bostan, F. Chyzak, P. Lairez, B. Salvy, Generalized Hermite reduction, creative telescoping and definite integration of D-finite functions, in Proc. ISSAC’18(2018), pp. 95-102 [arXiv:1805.03445] · Zbl 1467.34011
[22] D.J. Broadhurst, J. Fleischer, O.V. Tarasov, Two-loop two-point functions with masses: asymptotic expansions and Taylor series, in any dimension. Z. Phys. C Part. Fields 60, 287-301 (1993) [arXiv:hep-ph/9304303] · doi:10.1007/BF01474625
[23] S. Chen, M. van Hoeij, M. Kauers, C. Koutschan, Reduction-based creative telescoping for fuchsian D-finite functions. J. Symb. Comput. 85, 108-127 (2018) [arXiv:1611.07421] · Zbl 1379.68363 · doi:10.1016/j.jsc.2017.07.005
[24] S. Chen, M. Kauers, C. Koutschan, A generalized Apagodu-Zeilberger algorithm, in Proc. ISSAC’14(2014), pp. 107-114 [arXiv:1402.2409] · Zbl 1325.68270
[25] F. Chyzak, An extension of Zeilberger’s fast algorithm to general holonomic functions. Discret. Math. 217, 115-134 (2000) · Zbl 0968.33011 · doi:10.1016/S0012-365X(99)00259-9
[26] M. Deneufchâtel, G.H.E. Duchamp, V.H.N. Minh, A.I. Solomon, Independence of hyperlogarithms over function fields via algebraic combinatorics, in Proc. CAI 2011(2011), pp. 127-139 [arXiv:1101.4497] · Zbl 1279.11069
[27] J. Fleischer, A.V. Kotikov, O.L. Veretin, Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass. Nucl. Phys. B 547, 343-374 (1999) [arXiv:hep-ph/9808242] · doi:10.1016/S0550-3213(99)00078-4
[28] C. Hermite, Sur la réduction des intégrales hyperelliptiques aux fonctions de première, de seconde et de troisième espèce. Bull. Sci. Math. Astron. \((2^e\) série) 7, 36-42 (1883) · JFM 15.0413.01
[29] M. Karr, Summation in finite terms. J. Assoc. Comput. Mach. 28, 305-350 (1981) · Zbl 0494.68044 · doi:10.1145/322248.322255
[30] I.A. Lappo-Danilevski, Résolution algorithmique des problèmes réguliers de Poincaré et de Riemann - Mémoire premier: Le problème de Poincaré, concernant la construction d’un groupe monodromie d’un système donné d’équations différentielles linéaires aux integrales régulières. J. Soc. Phys-Math. Léningrade. 2, 94-120 (1928)
[31] C. Mack, Integration of affine forms over elementary functions. Computational Physics Group Report UCP-39, University of Utah, 1976
[32] S.-O. Moch, P. Uwer, S. Weinzierl, Nested sums, expansion of transcendental functions, and multiscale multiloop integrals. J. Math. Phys. 43, 3363-3386 (2002) [arXiv:hep-ph/0110083] · Zbl 1060.33007 · doi:10.1063/1.1471366
[33] A.C. Norman, P.M.A. Moore, Implementing the new Risch integration algorithm, in Proc. 4th International Colloquium on Advanced Computing Methods in Theoretical Physics(1977), pp. 99-110
[34] H. Poincaré, Sur les groupes des équations linéaires. Acta Math. 4, 201-312 (1884) · JFM 16.0252.01 · doi:10.1007/BF02418420
[35] C.G. Raab, Definite integration in differential fields. PhD Thesis, Johannes Kepler Univ. Linz, 2012. http://www.risc.jku.at/publications/download/risc_4583/PhD_CGR.pdf
[36] C.G. Raab, On the arithmetic of d’Alembertian functions, Presentation at the \(19^{}\) thConference on Applications of Computer Algebra (ACA 2013), Málaga, 2-6 July 2013. Paper in preparation
[37] C.G. Raab, Symbolic computation of parameter integrals, in Proc. ISSAC’16(2016), pp. 13-15 · Zbl 1360.68952
[38] R. Ree, Lie elements and an algebra associated to shuffles. Ann. Math. 68, 210-220 (1958) · Zbl 0083.25401 · doi:10.2307/1970243
[39] R.H. Risch, The problem of integration in finite terms. Trans. Am. Math. Soc. 139, 167-189 (1969) · Zbl 0184.06702 · doi:10.1090/S0002-9947-1969-0237477-8
[40] C. Schneider, A difference ring theory for symbolic summation. J. Symb. Comput. 72, 82-127 (2016) [arXiv:1408.2776] · Zbl 1328.12015 · doi:10.1016/j.jsc.2015.02.002
[41] J.R. Sendra, F. Winkler, S. Pérez-Díaz, Rational Algebraic Curves - A Computer Algebra Approach(Springer, Berlin, 2008) · Zbl 1129.14083 · doi:10.1007/978-3-540-73725-4
[42] M.F. Singer, B.D. Saunders, B.F. Caviness, An extension of Liouville’s theorem on integration in finite terms. SIAM J. Comput. 14, 966-990 (1985) · Zbl 0575.12021 · doi:10.1137/0214069
[43] J. van der Hoeven, Constructing reductions for creative telescoping — the general differentially finite case. Appl. Algebra Eng. Commun. Comput. 32, 575-602 (2021) · Zbl 1503.33018 · doi:10.1007/s00200-020-00413-3
[44] J.A.M. Vermaseren, Harmonic sums, Mellin transforms, and integrals. Int. J. Mod. Phys. A 14, 2037-2076 (1999) [arXiv:hep-ph/9806280] · Zbl 0939.65032 · doi:10.1142/S0217751X99001032
[45] G. Wechsung, Functional equations of hyperlogarithms, in Structural Properties of Polylogarithms(AMS, Providence, 1991), pp. 171-184
[46] D. Zeilberger, A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32, 321 · Zbl 0738.33001 · doi:10.1016/0377-0427(90)90042-X
[47] E. Remiddi, J.A.M. Vermaseren, Harmonic polylogarithms. Int. J. Mod. Phys. A 15, 725-754 (2000) [arXiv:hep-ph/9905237] · Zbl 0951.33003 · doi:10.1142/S0217751X00000367
[48] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett. 5, 497-516 (1998) [arXiv:1105.2076] · Zbl 0961.11040 · doi:10.4310/MRL.1998.v5.n4.a7
[49] J. Blümlein, C.G. Raab, K. Schönwald, The polarized two-loop massive pure singlet Wilson coefficient for deep-inelastic scattering. Nucl. Phys. B 948, Article 114736 (2019) [arXiv:1904.08911] · Zbl 1435.81226 · doi:10.1016/j.nuclphysb.2019.114736
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.