×

Discovering and proving infinite binomial sums identities. (English) Zbl 1365.05009

The paper deals with several beautiful and interesting identities involving binomial sums and harmonic sums etc. Many such sums have iterated integral representations. In fact, multi-zeta values and polylogarithms occur naturally in mathematical structures which emerge from multi-loop Feynman diagrams. Harmonic polylogarithms satisfy the relations in quasi-shuffle algebras. Similarly, cyclotomic polylogarithms obey a shuffle algebra as well. By means of the Mellin transform, these lead to cyclotomic harmonic sums etc. The author and his collaborators have been using multi-loop Feynman diagrams to not only prove many interesting identities but even to discover and conjecture several unexpected ones.
In this paper, the author roughly uses the following approach. He writes the sums under consideration in terms of nested integrals which are, in turn, re-expressed in terms of cyclotomic harmonic polylogarithms. Finally, relations between cyclotomic polylogarithms are found thereby leading to expressions for the original sums. For details, the reader is referred to the rich reservoir of results in the paper as well as in the earlier papers of the author and collaborators.

MSC:

05A10 Factorials, binomial coefficients, combinatorial functions
11B65 Binomial coefficients; factorials; \(q\)-identities
11M32 Multiple Dirichlet series and zeta functions and multizeta values
33B30 Higher logarithm functions
68W30 Symbolic computation and algebraic computation

References:

[1] Ablinger [Ablinger 14] J., Loops and Legs in Quantum Field Theory – LL (2014)
[2] DOI: 10.1007/978-3-7091-1616-6_1 · Zbl 1308.81140 · doi:10.1007/978-3-7091-1616-6_1
[3] DOI: 10.1088/1742-6596/523/1/012060 · doi:10.1088/1742-6596/523/1/012060
[4] Ablinger [Ablinger et al. 14] J., J. Math. Phys. Comput. 55 pp 1– (2014)
[5] DOI: 10.1063/1.3629472 · Zbl 1272.81127 · doi:10.1063/1.3629472
[6] DOI: 10.1063/1.4811117 · Zbl 1295.81071 · doi:10.1063/1.4811117
[7] Borwein [Borwein and Borwein 87] J. M., Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (1987)
[8] DOI: 10.1080/10586458.2001.10504426 · Zbl 0998.11045 · doi:10.1080/10586458.2001.10504426
[9] DOI: 10.1016/S0012-365X(99)00256-3 · Zbl 0959.68134 · doi:10.1016/S0012-365X(99)00256-3
[10] DOI: 10.1016/S0550-3213(01)00095-5 · Zbl 0969.81598 · doi:10.1016/S0550-3213(01)00095-5
[11] DOI: 10.1016/j.nuclphysb.2004.08.020 · Zbl 1123.81388 · doi:10.1016/j.nuclphysb.2004.08.020
[12] DOI: 10.1016/S0550-3213(99)00078-4 · doi:10.1016/S0550-3213(99)00078-4
[13] DOI: 10.1023/A:1008791603281 · Zbl 0959.16021 · doi:10.1023/A:1008791603281
[14] DOI: 10.1016/S0550-3213(03)00177-9 · Zbl 1097.81929 · doi:10.1016/S0550-3213(03)00177-9
[15] DOI: 10.1016/S0370-2693(00)00574-8 · Zbl 1031.81568 · doi:10.1016/S0370-2693(00)00574-8
[16] DOI: 10.1088/1126-6708/2007/10/048 · doi:10.1088/1126-6708/2007/10/048
[17] DOI: 10.2307/2322496 · Zbl 0645.05008 · doi:10.2307/2322496
[18] DOI: 10.1016/S0377-0427(98)00137-X · Zbl 1002.11021 · doi:10.1016/S0377-0427(98)00137-X
[19] DOI: 10.1142/S0217751X00000367 · Zbl 0951.33003 · doi:10.1142/S0217751X00000367
[20] DOI: 10.1063/1.1758319 · Zbl 1071.33018 · doi:10.1063/1.1758319
[21] DOI: 10.1016/0022-314X(85)90019-8 · Zbl 0551.10031 · doi:10.1016/0022-314X(85)90019-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.