×

Well-posedness and critical thresholds in a nonlocal Euler system with relaxation. (English) Zbl 1486.35334

Summary: We propose and study a nonlocal Euler system with relaxation, which tends to a strictly hyperbolic system under the hyperbolic scaling limit. An independent proof of the local existence and uniqueness of this system is presented in any spatial dimension. We further derive a precise critical threshold for this system in one dimensional setting. Our result reveals that such nonlocal system admits global smooth solutions for a large class of initial data. Thus, the nonlocal velocity regularizes the generic finite-time breakdown in the pressureless Euler system.

MSC:

35Q31 Euler equations
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids

References:

[1] G. R. Baker; X. Li; A. C. Morlet, Analytic structure of two 1D-transport equations with fluxes, Physica D, 91, 349-375 (1996) · Zbl 0899.76104 · doi:10.1016/0167-2789(95)00271-5
[2] M. Bhatnagar; H. Liu, Critical thresholds in one-dimensional damped Euler-Poisson systems, Math. Mod. Meth. Appl. Sci., 30, 891-916 (2020) · Zbl 1453.35145 · doi:10.1142/S0218202520500189
[3] J. A. Carrillo; Y. P. Choi; E. Tadmor; C. Tan, Critical thresholds in 1D Euler equations with non-local forces, Math. Mod. Meth. Appl. Sci., 26, 185-206 (2016) · Zbl 1356.35174 · doi:10.1142/S0218202516500068
[4] J. A. Carrillo; Y. P. Choi; E. Zatorska, On the pressureless damped Euler-Poisson equations with quadratic confinement, Math. Mod. Meth. Appl. Sci., 26, 2311-2340 (2016) · Zbl 1349.35378 · doi:10.1142/S0218202516500548
[5] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, \(3^{rd}\) edition, 325, Springer-Verlag Berlin Heidelberg. · Zbl 0940.35002
[6] S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland Publishing Company, Amsterdam, 1962. · Zbl 1375.82003
[7] T. Do; A. Kiselev; L. Ryzhik; C. Tan, Global regularity for the fractional Euler alignment system, Arch. Rat. Mech. Anal., 228, 1-37 (2017) · Zbl 1390.35370 · doi:10.1007/s00205-017-1184-2
[8] S. Engelberg; H. Liu; E. Tadmor, Critical thresholds in Euler-Poisson equations, Indiana University Math. Journal, 50, 109-157 (2001) · Zbl 0989.35110 · doi:10.1512/iumj.2001.50.2177
[9] L. C. F. Ferreira; J. C. Valencia-Guevara, Periodic solutions for a 1D-model with nonlocal velocity via mass transport, J. Diff. Equ., 260, 7093-7114 (2016) · Zbl 1339.35237 · doi:10.1016/j.jde.2016.01.018
[10] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, \(2^{nd}\) edition, 224, Springer-Verlag Berlin Heidelberg, 2001. · Zbl 1042.35002
[11] S. M. He; E. Tadmor, Global regularity of two-dimensional flocking hydrodynamics, C. R. Math., 355, 795-805 (2017) · Zbl 1375.35563 · doi:10.1016/j.crma.2017.05.008
[12] A. Kiselev; C. Tan, Global regularity for 1D Eulerian dynamics with singular interaction forces, SIAM J. Math. Anal., 50, 6208-6229 (2018) · Zbl 1405.35162 · doi:10.1137/17M1141515
[13] P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, Journal of Math. Phys., 5 (1964), 611. · Zbl 0135.15101
[14] T. Li; H. Liu, Critical thresholds in a relaxation model for traffic flows, Indiana Univ. Math. J., 57, 1409-1431 (2008) · Zbl 1152.35006 · doi:10.1512/iumj.2008.57.3215
[15] T. Li; H. Liu, Critical thresholds in a relaxation system with resonance of characteristic speeds, Disc. Cont. Dyn. Sys-Series A, 24, 511-521 (2009) · Zbl 1171.35428 · doi:10.3934/dcds.2009.24.511
[16] T. Li; H. Liu, Critical thresholds in hyperbolic relaxation systems, J. Diff. Equ., 247, 33-48 (2009) · Zbl 1170.35062 · doi:10.1016/j.jde.2009.03.032
[17] H. Liu; E. Tadmor, Critical thresholds in a convolution model for nonlinear conservation laws, SIAM J. Math. Anal., 33, 930-945 (2001) · Zbl 1002.35085 · doi:10.1137/S0036141001386908
[18] H. Liu; E. Tadmor, Spectral dynamics of the velocity gradient field in restricted flows, Commun. Math. Phys., 228, 435-466 (2002) · Zbl 1031.76006 · doi:10.1007/s002200200667
[19] H. Liu; E. Tadmor, Critical thresholds in 2-D restricted Euler-Poisson equations, SIAM J. Appl. Math., 63, 1889-1910 (2003) · Zbl 1073.35187 · doi:10.1137/S0036139902416986
[20] H. Liu; E. Tadmor, Rotation prevents finite-time breakdown, Physica D, 188, 262-276 (2004) · Zbl 1098.76643 · doi:10.1016/j.physd.2003.07.006
[21] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, 53, Springer Science+Business Media, 1984. · Zbl 0537.76001
[22] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, 1990. · Zbl 0765.35001
[23] E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment, Phil. Trans. R. Soc. A., 372 (2014), 20130401. · Zbl 1353.76064
[24] E. Tadmor; D. Wei, On the global regularity of subcritical Euler-Poisson equations with pressure, J. Eur. Math. Soc., 10, 757-769 (2008) · Zbl 1155.35078 · doi:10.4171/JEMS/129
[25] D. Wei; E. Tadmor; H. Bae, Critical thresholds in multi-dimensional Euler-Poisson equations with radial symmetry, Commun. Math. Sci., 10, 75-86 (2012) · Zbl 1272.35146 · doi:10.4310/CMS.2012.v10.n1.a4
[26] W. A. Yong, Intrinsic properties of conservation-dissipation formalism of irreversible thermodynamics, Phil. Trans. R. Soc. A., 378 (2020), 20190177. · Zbl 1462.82052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.