×

Analytic structure of two 1D-transport equations with nonlocal fluxes. (English) Zbl 0899.76104

Summary: We replace the flux term in Burgers’ equation by two simple alternates that contain contributions depending globally on the solution. In one case, the term is in the form of a hyperbolic equation where the characteristic speed is nonlocal, and in the other the term is in conservation form. In both cases, the nonanalytic is due to the presence of the Hilbert transform. The equations have a loose analogy to the motion of vortex sheets. In particular, they both form singularities in finite time in the absence of viscous effects. Our motivation then is to study the influence of viscosity. In one case, viscosity does not prevent singularity formation. In the other, we can prove solutions exist for all time, and determine the likely weak solution as viscosity vanishes. An interesting aspect of our work is that singularity formation can be viewed as the motion of singularities in the complex physical plane that reach the real axis in finite time. In one case, the singularity is a pole and causes the solution to blow up when it reaches the real axis. In the other, numerical solutions and an asymptotic analysis suggest that the weak solution contains a square root singularity that reaches the real axis in finite time, and then propagates along it. We hope our results will spur further interest in the role of singularities in the complex spatial plane in solutions to transport equations.

MSC:

76B99 Incompressible inviscid fluids
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley · Zbl 0373.76001
[2] Lax, P. D.; Levermore, C. D., Commun. Pure Appl. Math., 36, 253-290 (1983) · Zbl 0532.35067
[3] Dhanak, M. R., J. Fluid Mech., 269, 265-281 (1994) · Zbl 0821.76013
[4] Saffman, P. G., Vortex Dynamics (1992), Cambridge Univ. Press · Zbl 0777.76004
[5] Moore, D. W., (Proc. R. Soc. London A, 365 (1979)), 105-119 · Zbl 0404.76040
[6] Meiron, D. I.; Baker, G. R.; Orszag, S. A., J. Fluid Mech., 114, 283-298 (1982) · Zbl 0476.76031
[7] Caflisch, R. E.; Orellana, O., SIAM J. Math. Anal., 20, 293-307 (1989) · Zbl 0697.76029
[8] Krasny, R., J. Fluid Mech., 167, 65-93 (1986) · Zbl 0601.76038
[9] Shelley, M. J., J. Fluid Mech., 244, 493-526 (1992) · Zbl 0775.76047
[10] Saffman, P. G.; Baker, G. R., Vortex interactions, Ann. Rev. Fluid Mech., 11, 95-122 (1979) · Zbl 0434.76001
[11] Ishihara, T.; Kaneda, Y., J. Phys. Soc. Jpn., 63, 388-392 (1994)
[12] Baker, G. R.; Shelley, M. J., J. Fluid Mech., 215, 161-194 (1990) · Zbl 0698.76029
[13] Tryggvason, G.; Dahm, W. J.A.; Sbeih, K., ASME J. Fluid Engin., 113, 31-36 (1991)
[14] Hou, T.; Lowengrub, J.; Shelley, M., J. Comp. Phys., 114, 312-338 (1994) · Zbl 0810.76095
[15] Duchon, J.; Robert, O., J. Diff. Equ., 73, 215-224 (1988) · Zbl 0667.35046
[16] Majda, A., Indiana Univ. Math. J., 42, 921-939 (1993) · Zbl 0791.76015
[17] Matsuno, Y., J. Math. Phys., 32, 120-126 (1991) · Zbl 0735.35106
[18] Thual, O.; Frisch, U.; Hénon, M., J. Phys. (Paris), 46, 1485-1494 (1985)
[19] Frisch, U.; Morf, R., Phys. Rev. A, 23, 2673-2688 (1981)
[20] Shraiman, B.; Bensimon, D., Phys. Rev. A, 30, 2840-2856 (1984)
[21] Tanveer, S., Phil. Trans. R. Soc. London A, 343, 1-55 (1993)
[22] Bessis, D.; Fournier, J., Complex singularities and the Riemann surface for the Burgers equation, (Research Reports in Physics — Nonlinear Physics (1990)), 252-257 · Zbl 0728.35109
[23] Kreiss, H. O.; Lorenz, J., Initial-Boundary Value Problems and the Navier-Stokes Equations (1989), Academic Press · Zbl 0689.35001
[24] Constantin, P.; Lax, P. D.; Majda, A., Commun. Pure Appl. Math., 38, 715-724 (1985) · Zbl 0615.76029
[25] Schochet, S., Commun. Pure Appl. Math., 39, 531-537 (1986) · Zbl 0623.76012
[26] Sulem, C.; Sulem, P.; Frisch, H., J. Comp. Phys., 50, 138-161 (1983) · Zbl 0519.76002
[27] Siegel, M., An analytical and numerical study of singularity formation in the Rayleigh-Taylor problem., (Ph.D. Thesis (1989), New York University)
[28] Baker, G. R.; Caflisch, R. E.; Siegel, M., J. Fluid Mech., 252, 51-78 (1993) · Zbl 0791.76027
[29] Caflisch, R., Physica D, 67, 1-23 (1993)
[30] Ely, J.; Baker, G. R., J. Comp. Phys., 111, 275-281 (1994) · Zbl 0799.76060
[31] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton Univ. Press · Zbl 0207.13501
[32] Muskelishvili, N. I., Singular Integral Equations (1958), Noordhoff: Noordhoff Groningen
[33] Baker, G. R.; Li, X.; Morlet, A. C., Analytical results for two simple transport equations with nonlocal fluxes, (Tech. Rept. TP4-3 (1994), The Ohio State University)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.