×

Real variable methods in harmonic analysis and Navier-Stokes equations. (English) Zbl 1486.35327

Rassias, Michael Th. (ed.), Harmonic analysis and applications. Cham: Springer. Springer Optim. Appl. 168, 243-277 (2021).
The question of existence and smoothness of solutions to the Navier-Stokes equations is one of the seven Millenium Prize Problems proposed in 2000 by the Clay Mathematics Institute of Cambridge, Massachusetts. The question discussed in this paper is, in author’s words, “to which extent harmonic analysis is used or should be used to study the Clay question on Navier-Stokes equations. Or, more generally, to discuss the Navier-Stokes equations on the whole space \(\mathbb{R}^3\) in various functional settings while using tools from real-variable methods in harmanic analysis.”
For the entire collection see [Zbl 1470.42003].

MSC:

35Q30 Navier-Stokes equations
35Q79 PDEs in connection with classical thermodynamics and heat transfer
76D05 Navier-Stokes equations for incompressible viscous fluids
42B37 Harmonic analysis and PDEs
42B25 Maximal functions, Littlewood-Paley theory
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)

References:

[1] K. Urban, Multiskalenverfahren für das Stokes-Problem und angepasste Wavelet-Basen(Verlag der Augustinus-Buchhandlung, Aachen, 1995) · Zbl 0844.65081
[2] E.M. Stein, Harmonic Analysis(Princeton University Press, Princeton, 1993) · Zbl 0821.42001
[3] Y. Giga, T. Miyakawa, Navier-Stokes flow in \(\mathbb{R}^3\) with measures as initial vorticity and Morrey spaces. Commun. Partial Diff. Equ. 14, 577-618 (1989) · Zbl 0681.35072
[4] J. Xiao, Homothetic variant of fractional Sobolev space with application to Navier-Stokes system. Dyn. Partial Differ. Equ. 4, 227-245 (2007) · Zbl 1147.42008 · doi:10.4310/DPDE.2007.v4.n3.a2
[5] J. Duchon, R. Robert, Dissipation d’énergie pour des solutions faibles des équations d’Euler et Navier-Stokes incompressibles. C. R. Acad. Sci. Paris (Série I) 329, 243-248 (1999) · Zbl 0939.76021 · doi:10.1016/S0764-4442(00)88601-2
[6] P. Auscher, D. Frey, On well-posedness of parabolic equations of Navier-Stokes type with \({BMO}^{-1}(\mathbb{R}^n)\) data. J. Inst. Math. Jussieu 16, 947-985 (2017) · Zbl 1375.35307
[7] H. Bahouri, J.Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations(Springer, Berlin/Heidelberg, 2011) · Zbl 1227.35004 · doi:10.1007/978-3-642-16830-7
[8] O. Barraza, Self-similar solutions in weak \(L^{}\) p-spaces of the Navier-Stokes equations. Rev. Mat. Iberoam. 12, 411-439 (1996) · Zbl 0860.35092 · doi:10.4171/RMI/202
[9] G. Battle, P. Federbush, Divergence-free vector wavellets. Mich. Math. J. 40, 181-195 (1995) · Zbl 0798.42022
[10] A. Benedek, A.P. Calderón, R. Panzone, Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. USA 48, 356-365 (1962) · Zbl 0103.33402 · doi:10.1073/pnas.48.3.356
[11] J.M. Bony. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Ec. Norm. Sup. 14, 209-246 (1981) · Zbl 0495.35024 · doi:10.24033/asens.1404
[12] L. Brandolese. Localisation, oscillations et comportement asymptotique pour les équations de Navier-Stokes(Thèse, ENS Cachan, 2001)
[13] L. Brandolese, Y. Meyer, On the instantaneous spreading for the Navier-Stokes system in the whole space. ESAIM Contr. Optim. Calc. Var. 8, 273-285 (2002) · Zbl 1080.35063 · doi:10.1051/cocv:2002021
[14] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35, 771-831 (1982) · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[15] A.P. Calderón, A. Zygmund, On the existence of certain singular integrals. Acta Math. 88, 85-139 (1952) · Zbl 0047.10201 · doi:10.1007/BF02392130
[16] C. Calderón, Initial values of Navier-Stokes equations. Proc. Am. Math. Soc. 117, 761-766 (1993) · Zbl 0777.35054 · doi:10.1090/S0002-9939-1993-1116254-9
[17] S. Campanato, Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa 17, 175-188 (1963) · Zbl 0121.29201
[18] M. Cannone, Ondelettes, Paraproduits et Navier-Stokes(Diderot Editeur, Paris, 1995) · Zbl 1049.35517
[19] M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, in Handbook of Mathematical Fluid Mechanics, vol. III, ed. by S.J. Friedlander, D. Serre (Elsevier, Amsterdam, 2004) · Zbl 1222.35139
[20] M. Cannone, G. Wu, Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces. Nonlinear Anal. 75, 3754-3760 (2012) · Zbl 1238.35083 · doi:10.1016/j.na.2012.01.029
[21] D. Chamorro, A molecular method applied to a non-local PDE in stratified Lie groups. J. Math. Anal. Appl. 413, 583-608 (2014) · Zbl 1322.35144 · doi:10.1016/j.jmaa.2013.12.006
[22] D. Chamorro, S. Menozzi, Non linear singular drifts and fractional operators: when Besov meets Morrey and Campanato. Potential Anal. 49, 1-35 (2018) · Zbl 1404.35477 · doi:10.1007/s11118-017-9647-5
[23] J.M. Chemin, Remarques sur l’existence globale pour le système de Navier-Stokes incompressible. SIAM J. Math. Anal. 23, 20-28 (1992) · Zbl 0762.35063 · doi:10.1137/0523002
[24] J.Y. Chemin, N. Lerner, Flot de champs de vecteurs non-lipschitziens et équations de Navier-Stokes. J. Diff. Equ. 12, 314-326 (1995) · Zbl 0878.35089 · doi:10.1006/jdeq.1995.1131
[25] Q. Chen, Z. Zhang, Space-time estimates in the Besov spaces and the 3D Navier-Stokes equations. Methods Appl. Anal. 13, 107-122 (2006) · Zbl 1185.35160
[26] Q. Chen, C. Miao, Z. Zhang, On the uniqueness of weak solutions for the 3D Navier-Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2165-2180 (2009) · Zbl 1260.35106 · doi:10.1016/j.anihpc.2009.01.008
[27] R. Coifman, P.L. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces. J. Math. Pures et Appl. 72, 247-286 (1992) · Zbl 0864.42009
[28] R. Coifman, Y. Meyer, E.M. Stein, Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304-335 (1985) · Zbl 0569.42016 · doi:10.1016/0022-1236(85)90007-2
[29] R. Coifman, Y. Meyer, Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier 28, 177-202 (1978) · Zbl 0368.47031 · doi:10.5802/aif.708
[30] R. Coifman, Y. Meyer, Au delà des opérateurs pseudo-différentiels. Astérisque 57, Société Mathématique de France (1978) · Zbl 0483.35082
[31] R. Coifman, Y. Meyer, Ondelettes et Opérateurs, vol. III (Hermann, Paris, 1991) · Zbl 0745.42012
[32] S. Dobrokhotov, A. Shafarevich, Some integral identities and remarks on the decay at infinity of the solutions to the Navier-Stokes equations in the entire space. Russ. J. Math. Phys. 2, 133-135 (1994) · Zbl 0976.35508
[33] E. Fabes, B.F. Jones, N. Rivière, The initial value problem for the Navier-Stokes equations with data in \(L^{}\) p. Arch. Ration. Mech. Anal. 45, 222-240 (1972) · Zbl 0254.35097 · doi:10.1007/BF00281533
[34] M. Farge, N. Kevlahan, V. Perrier, K. Schneider, Turbulence analysis, modelling and computing using wavelets, in Wavelets and Physics, ed. by van der Berg (Cambridge University Press, Cambridge, 1999) · Zbl 1112.76434
[35] P. Federbush, Navier and Stokes meet the wavelet. Commun. Math. Phys. 155, 219-248 (1993) · Zbl 0795.35080 · doi:10.1007/BF02097391
[36] C. Fefferman, The uncertainty principle. Bull. Am. Math. Soc. 9, 129-206 (1983) · Zbl 0526.35080 · doi:10.1090/S0273-0979-1983-15154-6
[37] V. Maz’ya, On the theory of the n-dimensional Schrödinger operator [in Russian]. Izvestya Akademii Nauk SSSR (ser. Mat.,) 28, 1145-1172 (1964) · Zbl 0148.35602
[38] Y. Meyer, Wavelets, Paraproducts and Navier-Stokes Equations, Current developments in Mathematics 1996 (International Press, Cambridge, 1999), pp. 02238-2872
[39] S. Monniaux, Uniqueness of mild solutions of the Navier-Stokes equation and maximal \(L^{}\) p-regularity. C. R. Acad. Sci. Paris, Série I 328, 663-668 (1999) · Zbl 0931.35127
[40] S. Montgomery-Smith, Finite time blow up for a Navier-Sokes like equation. Proc. Am. Math. Soc. 129, 3017-3023 (2007)
[41] R. O’Neil, Convolution operators and L(p, q) spaces. Duke Math. J. 30, 129-142 (1963) · Zbl 0178.47701 · doi:10.1215/S0012-7094-63-03015-1
[42] F. Oru, Rôle des oscillations dans quelques problèmes d’analyse non linéaire(Thèse, École Normale Supérieure de Cachan, 1998)
[43] G. Prodi, Un teorema di unicitá per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48, 173-182 (1959) · Zbl 0148.08202 · doi:10.1007/BF02410664
[44] M. Riesz, Sur les fonctions conjuguées. Math. Z. 27, 218-244 (1927) · JFM 53.0259.02 · doi:10.1007/BF01171098
[45] J. Serrin, The initial value problem for the Navier-Stokes equations, in Nonlinear Problems (Proceedings of Symposium, Madison, 1962)(University of Wisconsin Press, Madison, 1963), pp. 69-98 · Zbl 0115.08502
[46] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187-195 (1962) · Zbl 0106.18302 · doi:10.1007/BF00253344
[47] E.M. Stein, Singular Integrals and Differentiability Properties of Functions(Princeton University Press, Princeton, 1971) · doi:10.1515/9781400883882
[48] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces(Princeton University Press, Princeton, 1971) · Zbl 0232.42007
[49] L. Tartar, An Introduction to Navier-Stokes Equation and Oceanography(Springer, Berlin/New York, 2006) · Zbl 1194.86001 · doi:10.1007/3-540-36545-1
[50] M.E. Taylor, Analysis on Morrey Spaces and Applications to Navier-Stokes Equations and Other Evolution EquationsCommun. Partial Differ. Equ. 17, 1407-1456 (1992) · Zbl 0771.35047 · doi:10.1080/03605309208820892
[51] M. Vishik, Hydrodynamics in Besov spaces. Arch. Ration. Mech. Anal. 145, 197-214 (1998) · Zbl 0926.35123 · doi:10.1007/s002050050128
[52] M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Annales Scientifiques de l’cole Normale Suprieure 32, 769-812 (1999) · Zbl 0938.35128 · doi:10.1016/S0012-9593(00)87718-6
[53] C. Fefferman, Existence and smoothness of the Navier-Stokes equation, in The Millennium Prize Problems, ed, by J.A. Carlson, A. Jaffe, A. Wiles (American Mathematical Society, Cambridge, 2006), pp. 57-67 · Zbl 1194.35002
[54] P.G. Fernandez-Dálgo, P.G. Lemarié-Rieusset, Weak solutions for Navier-Stokes equations with initial data in weighted \(L^2\) spaces. Preprint, Univ. Évry (2019) · Zbl 1434.35050
[55] C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 87, 359-369 (1989) · Zbl 0702.35203 · doi:10.1016/0022-1236(89)90015-3
[56] G.B. Folland, Some topics in the history of harmonic analysis in the twentieth century. Indian J. Pure Appl. Math. 48, 1-58 (2017) · Zbl 1391.42002 · doi:10.1007/s13226-016-0198-z
[57] G.B. Folland, E.M. Stein, Hardy Spaces on Homogeneous Groups(Princeton University Press, Princeton, 1982) · Zbl 0508.42025
[58] M. Frazier, B. Jawerth, A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93, 34-170 (1990) · Zbl 0716.46031 · doi:10.1016/0022-1236(90)90137-A
[59] P. Frick, V. Zimin, Hierarchical models of turbulence, in Wavelets, Fractals and Fourier Transforms, ed. by M. Farge et al. (Oxford University Press, Oxford, 1993) · Zbl 0821.76036
[60] U. Frisch. Turbulence. The Legacy of A.N. Kolmogorov(Cambridge University Press, Cambridge, 1995) · Zbl 0832.76001
[61] H. Fujita, T. Kato, On the non-stationary Navier-Stokes system. Rend. Sem. Math. Univ. Padova 32, 243-260 (1962) · Zbl 0114.05002
[62] G. Furioli, P.G. Lemarié-Rieusset, E. Terraneo, Sur l’unicité dans \(L^3(\mathbb{R}^3)\) des solutions “mild” de l’équation de Navier-Stokes. C. R. Acad. Sci. Paris, Série I 325, 1253-1256 (1997) · Zbl 0894.35083
[63] G. Furioli, P.G. Lemarié-Rieusset, E. Terraneo, Unicité dans \(\text{L}^3(\mathbb{R}^3)\) et d’autres espaces limites pour Navier-Stokes. Rev. Mat. Iberoam. 16, 605-667 (2000) · Zbl 0970.35101
[64] G. Furioli, E. Terraneo, Molecules of the Hardy space and the Navier-Stokes equations. Funkcial. Ekvac. 45, 141-160 (2002) · Zbl 1140.35549
[65] P. Gérard, Y. Meyer, F. Oru, Inégalités de Sobolev précisées, in Séminaire X-EDP(1996) · Zbl 1066.46501
[66] D. Goldberg, A local version of real Hardy spaces. Duke Math. J. 46, 27-42 (1979) · Zbl 0409.46060 · doi:10.1215/S0012-7094-79-04603-9
[67] L. Grafakos, Classical Harmonic Analysis, 2nd edn. (Springer, New York, 2008) · Zbl 1220.42001
[68] L. Grafakos, Modern Harmonic Analysis, 2nd edn. (Springer, London, 2009) · Zbl 1158.42001
[69] G.H. Hardy, J.E. Littlewood, A maximal theorem with function-theoretic applications. Acta Math. 54, 81-116 (1930) · JFM 56.0264.02 · doi:10.1007/BF02547518
[70] L. Hedberg, On certain convolution inequalities. Proc. Am. Math. Soc. 10, 505-510 (1972) · Zbl 0283.26003 · doi:10.1090/S0002-9939-1972-0312232-4
[71] C. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283-323 (1968/1969) · Zbl 0177.15701
[72] T. Kato, Strong \(L^{}\) p solutions of the Navier-Stokes equations in \(\mathbb{R}^m\) with applications to weak solutions. Math. Z. 187, 471-480 (1984) · Zbl 0545.35073
[73] T. Kato, Strong solutions of the Navier-Stokes equations in Morrey spaces. Boletim da Sociedade Brasileira de Matemática 22, 127-155 (1992) · Zbl 0781.35052 · doi:10.1007/BF01232939
[74] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891-907 (1988) · Zbl 0671.35066 · doi:10.1002/cpa.3160410704
[75] H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations. Adv. Math. 157, 22-35 (2001) · Zbl 0972.35084 · doi:10.1006/aima.2000.1937
[76] H. Kozono, M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains. Tohoku Math. J. 48, 33-50 (1996) · Zbl 0860.35095 · doi:10.2748/tmj/1178225411
[77] H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251-278 (2002) · Zbl 1055.35087 · doi:10.1007/s002090100332
[78] H. Kozono, Y. Shimada, Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations. Math. Nachr. 276, 63-74 (2004) · Zbl 1078.35087 · doi:10.1002/mana.200310213
[79] H. Kozono, Y. Taniuchi, Bilinear estimates in BMO and Navier-Stokes equations. Math. Z. 157, 173-194 (2000) · Zbl 0970.35099 · doi:10.1007/s002090000130
[80] H. Kozono, M. Yamazaki, Semilinear heat equations and the Navier-Stokes equations with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959-1014 (1994) · Zbl 0803.35068 · doi:10.1080/03605309408821042
[81] I. Kukavica, Partial regularity for the Navier-Stokes equations with a force in a Morrey space. J. Math. Anal. Appl. 374, 573-584 (2011) · Zbl 1205.35199 · doi:10.1016/j.jmaa.2010.08.031
[82] O.A. Ladyzhenskaya, G.A. Seregin, On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J. Math. Fluid Mech. 1, 356-387 (1999) · Zbl 0954.35129 · doi:10.1007/s000210050015
[83] Y. Le Jan, A.S. Sznitman, Cascades aléatoires et équations de Navier-Stokes. C. R. Acad. Sci. Paris 324 Série I, 823-826 (1997) · Zbl 0876.35083
[84] Z. Lei, F. Lin, Global mild solutions of Navier-Sokes equations. Commun. Pure Appl. Math. 64, 297-1304 (2011) · Zbl 1225.35165 · doi:10.1002/cpa.20361
[85] P.G. Lemarié-Rieusset. Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivations et ondelettes vecteurs à divergence nulle, Revista Mat. Iberoamer. 8, 221-237 (1992) · Zbl 0874.42022 · doi:10.4171/RMI/123
[86] P.G. Lemarié-Rieusset, Une remarque sur l’analyticité des solutions milds des équations de Navier-Stokes dans \(\mathbb{R}^3 \). C. R. Acad. Sci. Paris Serie I 330, 183-186 (2000) · Zbl 0942.35131
[87] P.G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem(CRC Press, Boca Raton, 2002) · Zbl 1034.35093 · doi:10.1201/9781420035674
[88] P.G. Lemarié-Rieusset, Nouvelles remarques sur l’analyticité des solutions milds des équations de Navier-Stokes dans \(\mathbb{R}^3 \). C. R. Acad. Sci. Paris Serie I 338, 443-446 (2004) · Zbl 1047.35112
[89] P.G. Lemarié-Rieusset, The Navier-Stokes equations in the critical Morrey-Campanato space. Revista Matematica Iberoamericana 23, 897-930 (2007) · Zbl 1227.35230
[90] P.G. Lemarié-Rieusset, Euler equations and real harmonic analysis. Arch. Rat. Mech. Anal. 204, 355-386 (2012) · Zbl 1315.76010 · doi:10.1007/s00205-012-0504-9
[91] P.G. Lemarié-Rieusset, The Navier-Stokes Problem in the 21st Century(Chapman & Hall/CRC, Boca Raton, 2016) · Zbl 1342.76029
[92] P.G. Lemarié-Rieusset, R. May, Uniqueness for the Navier-Stokes equations and multipliers between Sobolev spaces. Nonlinear Anal. 66, 813-838 (2007) · Zbl 1185.35170
[93] J.L. Lions, Sur la régularité et l’unicité des solutions turbulentes des équations de Navier-Stokes. Rendiconti del Seminario Matematico della Università di Padova 30, 16-23 (1960) · Zbl 0098.17205
[94] J. Marcinkiewicz, Sur l’interpolation d’opérateurs. C. R. Acad. Sci. Paris 208, 1272-1273 (1939) · JFM 65.0506.03
[95] R. May, Régularité et unicité des solutions milds des équations de Navier-Stokes, Ph.D. Thesis, Université d’Évry (2002)
[96] C. Fefferman, E.M. Stein, \(H^{}\) p spaces of several variables. Acta Math. 129, 137-193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[97] R. Coifman, G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Mathematics (Springer, Berlin/Heidelberg, 1971) · Zbl 0224.43006 · doi:10.1007/BFb0058946
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.