×

Involutions on sheaves of endomorphisms of locally finitely presented \(\mathscr{O}_X\)-modules. (English) Zbl 1486.16020

The authors deal with local rings \(R\) and Azumaya \(R\)-algebras \(A\) of finite rank.
As the first main result, they construct some correspondence between the set of all \(R\)-linear involutions of End\(_R(A)\) (in the case of sheaves, \(O_{\mathrm{Spec}(R)}\)-linear involutions of \(\widetilde{\mathrm{End}_R(A)}\)) and the set of all nonsingular bilinear forms, which are either symmetric or skew-symmetric.
As the second main result, they show that every locally projective quasi-coherent \(O_X\)-module (where \(X\) is a scheme) of constant rank \(2\) is a commutative \(O_X\)-algebra, endowed with a unique standard involution.
The last (also the longest and most technical) part of the paper is dedicated to the study of involutions of the first kind on the algebra End\(_{O_X}(E)\), where \((X, O_X)\) is a locally ringed space and and \(E\) is a sheaf (more exactly, either a locally finitely presented \(O_X\)-module or a vector sheaf of finite rank on \(X\)). The authors give a formula for presenting every involution using some sections of another sheaf (an invertible \(O_X\)-module, which is connected with the sheaf \(E\) through some specific isomorphisms).
Reviewer: Mart Abel (Tartu)

MSC:

16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
14F22 Brauer groups of schemes
14F06 Sheaves in algebraic geometry
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)
Full Text: DOI

References:

[1] Bass, H.: K-theory and stable algebra, Publications mathématiques de l’ I.H.È.S. 22, 5-60 (1964)
[2] Bass, H.: Algebraic K-theory. W. A. Benjamin Inc, New York (1968) · Zbl 0174.30302
[3] Bosch, S., Algebraic Geometry and Commutative Algebra (2013), London: Springer, London · Zbl 1257.14001 · doi:10.1007/978-1-4471-4829-6
[4] Bourbaki, N., Elements of Mathematics (1968), Hermann, Paris: Theory of Sets, Hermann, Paris · Zbl 0175.27001
[5] Bourbaki, N.: Elements de mathematique. Algebre. Chapitre 8, Hermann, Paris (1958) · Zbl 0098.02501
[6] Calmes, B.; Fasel, J., Groupes classiques, Autours des schemas en groupes., II, 1-133 (2015) · Zbl 1360.20048
[7] Ford, TJ, Separable algebras, Graduate Studies in Mathematics (2017), Providence: American Mathematical Society, Providence · Zbl 1422.16014 · doi:10.1090/gsm/183
[8] Gortz, U.; Wedhorn, T., Algebraic Geometry I (2010), Springer Fachmedien, Germany: Schemes with Examples and Exercises, Springer Fachmedien, Germany · Zbl 1213.14001 · doi:10.1007/978-3-8348-9722-0
[9] Grothendieck, A., Le groupe de Brauer. I.: Algebres d’Azumaya et interpretations diverses, Seminaire Bourbaki, Vol. 9, 1995, pp. Exp. No. 290, 199-219
[10] Kashiwara, M.; Schapira, P., Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2006), Berlin: Springer- Verlag, Berlin · Zbl 1118.18001
[11] Knus, M-A, Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (1991), Berlin: Springer-Verlag, Berlin · Zbl 0756.11008
[12] Knus, M. A., Merkurjev, A.S., Rost, M., Tignol, J. P.: The Book of Involutions, Amer. Math. Soc. Colloquium Publications, Amer. Math. Soc., 1998 · Zbl 0955.16001
[13] Knus, M.-A., Ojanguren, M.: Theorie de la descente et algebres d’Azumaya, Lecture Notes inMathematics, Vol. 389, Springer-Verlag, Berlin (1974) · Zbl 0284.13002
[14] Hartshorne, R., Algebraic Geometry (1977), New York: Springer-Verlag, New York · Zbl 0367.14001 · doi:10.1007/978-1-4757-3849-0
[15] Helmstetter, J., Micali, A.: Quadratic Mappings and Clifford Algebras, Birkhauser, 2008 · Zbl 1144.15025
[16] Mallios, A: Geometry of Vector Sheaves, An Axiomatic Approach to Differential Geometry. Volume I: Vector Sheaves. General Theory, Kluwer Academic Publishers (1998) · Zbl 0904.18001
[17] Ntumba, PP; Yizengaw, B., On the commutativity of the Clifford and extension of scalars functors, Topology and its Applications, 168, 159-179 (2014) · Zbl 1287.18014 · doi:10.1016/j.topol.2014.02.005
[18] Raynaud, M.; Gruson, L., Criteres de platitude et de projectivite, Techniques de platification d’ un module, Inventiones Math., 13, 1-89 (1971) · Zbl 0227.14010 · doi:10.1007/BF01390094
[19] DeMeyer, F., Ingraham, E.: Separable algebras over commutative rings. Lecture Notes in Mathematics, vol. 181. Springer-Verlag, Berlin-New York (1971) · Zbl 0215.36602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.