×

Adaptive control realization for canonic Caputo fractional-order systems with actuator nonlinearity: application to mechatronic devices. (English) Zbl 1485.93221

Summary: Nonlinearities, such as dead-zone, backlash, hysteresis, and saturation, are common in the mechanical and mechatronic systems’ components and actuators. Hence, an effective control strategy should take into account such nonlinearities which, if unaccounted for, may cause serious response problems and might even result in system failure. Input saturation is one of the most common nonlinearities in practical control systems. So, this article introduces a novel adaptive variable structure control strategy for nonlinear Caputo fractional-order systems despite the saturating inputs. Owing to the complex nature of the fractional-order systems and lack of proper identification strategies for such systems, this research focuses on the canonic systems with complete unknown dynamics and even those with model uncertainties and external noise. Using mathematical stability theory and adaptive control strategy, a simple stable integral sliding mode control is proposed. The controller will be shown to be effective against actuator saturation as well as unknown characteristics and system uncertainties. Finally, two case studies, including a mechatronic device, are considered to illustrate the effectiveness and practicality of the proposed controller in the applications.

MSC:

93C10 Nonlinear systems in control theory
34A08 Fractional ordinary differential equations
93D15 Stabilization of systems by feedback
93C40 Adaptive control/observation systems
93B12 Variable structure systems

References:

[1] Podlubny, I., Fractional Differential Equations (1999), New York: Academic Press, New York · Zbl 0918.34010
[2] Yang, S.; Deng, M.; Ren, R., Stochastic resonance of fractional-order Langevin equation driven by periodic modulated noise with mass fluctuation, Adv. Differ. Equ., 2020 (2020) · Zbl 1482.35259 · doi:10.1186/s13662-020-2492-7
[3] Baleanu, D.; Mohammadi, H.; Rezapour, S., Analysis of the model of HIV-1 infection of \(CD4^+\) T-cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020) · Zbl 1482.37090 · doi:10.1186/s13662-020-02544-w
[4] Aghababa, M. P., Chaos in a fractional-order micro-electro-mechanical resonator and its suppression, Chin. Phys. B, 21 (2012) · doi:10.1088/1674-1056/21/10/100505
[5] Cui, P.; Wang, Q.; Li, S.; Gao, Q., Combined FIR and fractional-order repetitive control for harmonic current suppression of magnetically suspended rotor system, IEEE Trans. Ind. Electron., 64, 4828-4835 (2017) · doi:10.1109/TIE.2017.2668985
[6] Sun, Y.; Zheng, C., Fractional-order modelling of state-dependent non-associated behaviour of soil without using state variable and plastic potential, Adv. Differ. Equ., 2019 (2019) · Zbl 1458.74105 · doi:10.1186/s13662-019-2040-5
[7] Alizadeh, S.; Baleanu, D.; Rezapour, S., Analyzing transient response of the parallel RCL circuit by using the Caputo—Fabrizio fractional derivative, Adv. Differ. Equ., 2020 (2020) · Zbl 1487.94202 · doi:10.1186/s13662-020-2527-0
[8] Xin, B.; Peng, W.; Kwon, Y.; Liu, Y., Modeling, discretization, and hyperchaos detection of conformable derivative approach to a financial system with market confidence and ethics risk, Adv. Differ. Equ., 2019 (2019) · Zbl 1459.37095 · doi:10.1186/s13662-019-2074-8
[9] Almatroud, A. O., Synchronisation of two different uncertain fractional-order chaotic systems with unknown parameters using a modified adaptive sliding-mode controller, Adv. Differ. Equ., 2020 (2020) · Zbl 1482.34145 · doi:10.1186/s13662-020-02548-6
[10] Aghababa, M. P., A fractional sliding mode for finite-time control scheme with application to stabilization of electrostatic and electromechanical transducers, Appl. Math. Model., 39, 6103-6113 (2015) · Zbl 1443.93004 · doi:10.1016/j.apm.2015.01.053
[11] Wang, Y.; Li, B.; Yan, F.; Chen, B., Practical adaptive fractional-order nonsingular terminal sliding mode control for a cable-driven manipulator, Int. J. Robust Nonlinear Control, 29, 1396-1417 (2019) · Zbl 1410.93032 · doi:10.1002/rnc.4441
[12] Yang, X.; Hua, C.; Yan, J.; Guan, X., An exact stability condition for bilateral teleoperation with delayed communication channel, IEEE Trans. Syst. Man Cybern. Syst., 46, 434-439 (2016) · doi:10.1109/TSMC.2015.2444415
[13] Nikdel, N.; Badamchizadeh, M.; Azimirad, V.; Nazari, M., Fractional-order adaptive backstepping control of robotic manipulators in the presence of model uncertainties and external disturbances, IEEE Trans. Ind. Electron., 63, 6249-6256 (2016) · doi:10.1109/TIE.2016.2577624
[14] Liu, H.; Pan, Y.; Cao, J., Composite learning adaptive dynamic surface control of fractional-order nonlinear systems, IEEE Trans. Cybern., 50, 2557-2567 (2020) · doi:10.1109/TCYB.2019.2938754
[15] Aghababa, M. P., Fractional-calculus-based control scheme for dynamical systems with input uncertainty, Adv. Differ. Equ., 2019 (2019) · Zbl 1485.34017 · doi:10.1186/s13662-019-2326-7
[16] Zhou, Q.; Wang, L.; Wu, C.; Li, H.; Du, H., Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint, IEEE Trans. Syst. Man Cybern. Syst., 47, 1-12 (2017) · doi:10.1109/TSMC.2016.2557222
[17] Peng, D.; Zhang, T.; Yang, H., Stabilization for two-dimensional delta operator systems with time-varying delays and actuator saturation, Adv. Differ. Equ., 2018 (2018) · Zbl 1448.93261 · doi:10.1186/s13662-018-1851-0
[18] Liu, H.; Pan, Y.; Cao, J.; Wang, H.; Zhou, Y., Adaptive neural network backstepping control of fractional-order nonlinear systems with actuator faults, IEEE Trans. Neural Netw. Learn. Syst. (2020) · doi:10.1109/TNNLS.2020.2964044
[19] Wang, C.; Liang, M.; Chai, Y., An adaptive control of fractional-order nonlinear uncertain systems with input saturation, Complexity, 2019 (2019) · Zbl 1432.93180 · doi:10.1155/2019/5643298
[20] Shahri, E. S.A.; Balochian, S., Stability region for fractional-order linear system with saturating control, J. Control Autom. Electr. Syst., 25, 283-290 (2014) · doi:10.1007/s40313-014-0117-7
[21] Izadbakhsh, A.; Kheirkhahan, P., Adaptive fractional-order control of electrical flexible-joint robots: theory and experiment, proceedings of the institution of mechanical engineers, part I, J. Syst. Control Eng., 233, 1136-1145 (2019)
[22] Luo, J., State-feedback control for fractional-order nonlinear systems subject to input saturation, Math. Probl. Eng., 2014 (2014) · Zbl 1407.93144
[23] Lim, Y.-H.; Oh, K.-K.; Ahn, H.-S., Stability and stabilization of fractional-order linear systems subject to input saturation, IEEE Trans. Autom. Control, 58, 1062-1067 (2013) · Zbl 1369.93495 · doi:10.1109/TAC.2012.2218064
[24] Chen, M.; Shao, S.-Y.; Shi, P.; Shi, Y., Disturbance observer based robust synchronization control for a class of fractional-order chaotic systems, IEEE Trans. Circuits Syst. II, Express Briefs, 64, 417-421 (2017) · doi:10.1109/TCSII.2016.2563758
[25] Soorki, M. N.; Tavazoei, M. S., Constrained swarm stabilization of fractional order linear time invariant swarm systems, IEEE/CAA J. Autom. Sin., 3, 320-331 (2016) · doi:10.1109/JAS.2016.7508808
[26] Shahri, E. S.A.; Balochian, S., Analysis of fractional-order linear systems with saturation using Lyapunov”s second method and convex optimization, Int. J. Autom. Comput., 12, 440-447 (2015) · doi:10.1007/s11633-014-0856-8
[27] Wang, C.; Liang, M.; Chai, Y., Adaptive control of a class of incommensurate fractional order nonlinear systems with input dead-zone, IEEE Access, 7, 153710-153723 (2019) · doi:10.1109/ACCESS.2019.2948657
[28] Lin, W.; Qian, C., Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework, IEEE Trans. Autom. Control, 47, 757-774 (2002) · Zbl 1364.93400 · doi:10.1109/TAC.2002.1000270
[29] Aguila-Camacho, N.; Duarte-Mermoud, M. A.; Gallegos, J. A., Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 19, 2951-2957 (2014) · Zbl 1510.34111 · doi:10.1016/j.cnsns.2014.01.022
[30] Utkin, V. I., Sliding Modes in Control Optimization (1992), Berlin: Springer, Berlin · Zbl 0748.93044
[31] Matignon, D., Stability results of fractional differential equations with applications to control processing, IEEE-SMC Proceedings of the Computational Engineering in Systems and Application Multiconference, 963-968 (1996), Lille: IMACS, Lille
[32] Li, Y.; Chen, Y. Q.; Podlubny, I., Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 1965-1969 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[33] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[34] Lu, J. G., Chaotic dynamics and synchronization of fractional-order Arneodo’s systems, Chaos Solitons Fractals, 26, 1125-1133 (2005) · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023
[35] Aghababa, M. P., Chaotic behavior in fractional-order horizontal platform systems and its suppression using a fractional finite-time control strategy, J. Mech. Sci. Technol., 28, 1875-1880 (2014) · doi:10.1007/s12206-014-0334-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.