×

Practical adaptive fractional-order nonsingular terminal sliding mode control for a cable-driven manipulator. (English) Zbl 1410.93032

Summary: For the high precise tracking control purpose of a cable-driven manipulator under lumped uncertainties, a novel adaptive fractional-order nonsingular terminal sliding mode control scheme based on Time Delay Estimation (TDE) is proposed and investigated in this paper. The proposed control scheme mainly has three elements, i.e., a TDE element applied to properly compensate the lumped unknown dynamics of the system resulting in a fascinating model-free feature; a Fractional-Order Nonsingular Terminal Sliding Mode (FONTSM) surface element used to ensure high precision in the steady phase; and a combined reaching law with adaptive technique adopted to obtain fast convergence and high precision and chatter reduction under complex lumped disturbance. Stability of the closed-loop control system is analyzed with the Lyapunov stability theory. Comparative simulations and experiments are performed to demonstrate the effectiveness of our proposed control scheme using 2-DOF (degree of freedom) of a cable-driven manipulator named Polaris-I. Corresponding results show that our proposed method can ensure faster convergence, higher precision, and better robustness against complex lumped disturbance than the existing TDE-based FONTSM and continuous FONTSM control schemes.

MSC:

93B12 Variable structure systems
93C85 Automated systems (robots, etc.) in control theory
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C40 Adaptive control/observation systems
Full Text: DOI

References:

[1] BrysonJT, JinX, AgrawalSK. Optimal design of cable‐driven manipulators using particle swarm optimization. J Mech Robot. 2016;8(4):1‐8. https://doi.org/10.1115/1.4032103 · doi:10.1115/1.4032103
[2] JinML, LeeJ, TsagarakisNG. Model‐free robust adaptive control of humanoid robots with flexible joints. IEEE Trans Ind Electron. 2017;64(2):1706‐1715. https://doi.org/10.1109/TIE.2016.2588461 · doi:10.1109/TIE.2016.2588461
[3] LimWB, YeoSH, YangGL. Optimization of tension distribution for cable‐driven manipulators using tension‐level index. IEEE/ASME Trans Mechatron. 2014;19(2):676‐683. https://doi.org/10.1109/TMECH.2013.2253789 · doi:10.1109/TMECH.2013.2253789
[4] TownsendWT. The Effect of Transmission Design on Force‐Controlled Manipulator Performance [PhD dissertation]. Cambridge, MA: Massachusetts Institute of Technology; 1988. http://hdl.handle.net/1721.1/6835
[5] LensT, vonStrykO. Design and dynamics model of a lightweight series elastic tendon‐driven robot arm. Paper presented at: 2013 IEEE International Conference on Robotics and Automation (ICRA); 2013; Karlsruhe, Germany. https://doi.org/10.1109/ICRA.2013.6631218 · doi:10.1109/ICRA.2013.6631218
[6] LucaAD, SicilianoB, ZolloL. PD control with on‐line gravity compensation for robots with elastic joints: theory and experiments. Automatica. 2005;41(10):1809‐1819. https://doi.org/10.1016/j.automatica.2005.05.009 · Zbl 1087.93044 · doi:10.1016/j.automatica.2005.05.009
[7] CuiX, ChenWH, JinX, AgrawalSK. Design of a 7‐DOF cable‐driven arm exoskeleton (CAREX‐7) and a controller for dexterous motion training or assistance. IEEE/ASME Trans Mechatron. 2017;22(1):161‐172. https://doi.org/10.1109/TMECH.2016.2618888 · doi:10.1109/TMECH.2016.2618888
[8] WilsonGA, IrwinGW. Robust tracking of elastic joint manipulators using sliding mode control. Trans Inst Meas Control. 1994;16(2): 99‐107.
[9] HuangA‐C, ChenY‐C. Adaptive sliding control for single‐link flexible‐joint robot with mismatched uncertainties. IEEE Trans Control Syst Technol. 2004;12(5):770‐775. https://doi.org/10.1109/TCST.2004.826968 · doi:10.1109/TCST.2004.826968
[10] BabaghasabhaR, KhosraviMA, TaghiradHD. Adaptive robust control of fully constrained cable robots: singular perturbation approach. Nonlinear Dyn. 2016;85(1):607‐620. https://doi.org/10.1007/s11071-016-2710-8 · Zbl 1349.93313 · doi:10.1007/s11071-016-2710-8
[11] QianS, ZiB, DingH. Dynamics and trajectory tracking control of cooperative multiple mobile cranes. Nonlinear Dyn. 2016;83(1‐2):89‐108. https://doi.org/10.1007/s11071-015-2313-9 · Zbl 1349.93293 · doi:10.1007/s11071-015-2313-9
[12] ChatterjeeA, ChatterjeeR, MatsunoF, EndoT. Augmented stable fuzzy control for flexible robotic arm using LMI approach and neuro‐fuzzy state space modeling. IEEE Trans Ind Electron. 2008;55(3):1256‐1270. https://doi.org/10.1109/TIE.2007.896439 · doi:10.1109/TIE.2007.896439
[13] ChaouiH, SicardP, GueaiebW. ANN‐based adaptive control of robotic manipulators with friction and joint elasticity. IEEE Trans Ind Electron. 2009;56(8):3174‐3187. https://doi.org/10.1109/TIE.2009.2024657 · doi:10.1109/TIE.2009.2024657
[14] JinML, KangSH, ChangPH. Robust compliant motion control of robot with nonlinear friction using time‐delay estimation. IEEE Trans Ind Electron. 2008;55(1):258‐269. https://doi.org/10.1109/TIE.2007.906132 · doi:10.1109/TIE.2007.906132
[15] LeeJ, JinML, AhnKK. Precise tracking control of shape memory alloy actuator systems using hyperbolic tangential sliding mode control with time delay estimation. Mechatronics. 2013;23(3):310‐317. https://doi.org/10.1016/j.mechatronics.2013.01.005 · doi:10.1016/j.mechatronics.2013.01.005
[16] ChangPH, ParkSH. On improving time‐delay control under certain hard nonlinearities. Mechatronics. 2003;13(4):393‐412. https://doi.org/10.1016/S0957-4158(01)00046-0 · doi:10.1016/S0957-4158(01)00046-0
[17] KimJ, ChangP‐H, JinML. Fuzzy PID controller design using time‐delay estimation. Trans Inst Meas Control. 2016;39(9):1329‐1338. https://doi.org/10.1177/0142331216634833 · doi:10.1177/0142331216634833
[18] KumarRP, DasguptaA, KumarCS. Robust trajectory control of underwater vehicles using time delay control law. Ocean Eng. 2007;34(5‐6):842‐849. https://doi.org/10.1016/j.oceaneng.2006.04.003 · doi:10.1016/j.oceaneng.2006.04.003
[19] WangYY, GuLY, ChenB, WuHT. A new discrete time delay control of hydraulic manipulators. Proc Inst Mech Eng Part I J Syst Control Eng. 2017;231(3):168‐177. https://doi.org/10.1177/0959651816689340 · doi:10.1177/0959651816689340
[20] WangYY, JiangSR, ChenB, WuHT. Trajectory tracking control of underwater vehicle‐manipulator system using discrete time delay estimation. IEEE Access. 2017;5:7435‐7443. https://doi.org/10.1109/ACCESS.2017.2701350 · doi:10.1109/ACCESS.2017.2701350
[21] AbooeeA, KhorasaniMM, HaeriM. Finite time control of robotic manipulators with position output feedback. Int J Robust Nonlinear Control. 2017;27(16):2982‐2999. https://doi.org/10.1002/rnc.3721 · Zbl 1386.93201 · doi:10.1002/rnc.3721
[22] DongQ, ZongQ, TianBL, ZhangCF, LiuWJ. Adaptive disturbance observer‐based finite‐time continuous fault‐tolerant control for reentry RLV. Int J Robust Nonlinear Control. 2017;27(18):4275‐4295. https://doi.org/10.1002/rnc.3796 · Zbl 1379.93036 · doi:10.1002/rnc.3796
[23] MaRZ, ZhangGS, KrauseO. Fast terminal sliding‐mode finite‐time tracking control with differential evolution optimization algorithm using integral chain differentiator in uncertain nonlinear systems. Int J Robust Nonlinear Control. 2018;28(2):625‐639. https://doi.org/10.1002/rnc.3890 · Zbl 1390.93197 · doi:10.1002/rnc.3890
[24] HuangY, JiaYM. Robust adaptive fixed‐time tracking control of 6‐DOF spacecraft fly‐around mission for noncooperative target. Int J Robust Nonlinear Control. 2018;28(6):2598‐2618. https://doi.org/10.1002/rnc.4038 · Zbl 1390.93250 · doi:10.1002/rnc.4038
[25] ZhangY, TangSJ, GuoJ. Adaptive terminal angle constraint interception against maneuvering targets with fast fixed‐time convergence. Int J Robust Nonlinear Control. 2018;28(8):2996‐3014. https://doi.org/10.1002/rnc.4067 · Zbl 1391.93062 · doi:10.1002/rnc.4067
[26] ChenG, JinB, ChenY. Nonsingular fast terminal sliding mode posture control for six‐legged walking robots with redundant actuation. Mechatronics. 2018;50:1‐15. https://doi.org/10.1016/j.mechatronics.2018.01.011 · doi:10.1016/j.mechatronics.2018.01.011
[27] QiaoL, ZhangW. Double‐loop integral terminal sliding mode tracking control for UUVs with adaptive dynamic compensation of uncertainties and disturbances. IEEE J Oceanic Eng. 2018:1‐25, in press. https://doi.org/10.1109/JOE.2017.2777638 · doi:10.1109/JOE.2017.2777638
[28] JinML, LeeJ, AhnKK. Continuous nonsingular terminal sliding‐mode control of shape memory alloy actuators using time delay estimation. IEEE/ASME Trans Mechatron. 2015;20(2):899‐909. https://doi.org/10.1109/TMECH.2014.2323897 · doi:10.1109/TMECH.2014.2323897
[29] WangYY, ChenJW, GuLY, LiXD. Time delay control of hydraulic manipulators with continuous nonsingular terminal sliding mode. J Cent South Univ. 2015;22(12):4616‐4624. https://doi.org/10.1007/s11771-015-3012-x · doi:10.1007/s11771-015-3012-x
[30] JinML, LeeJ, ChangPH, ChoiC. Practical nonsingular terminal sliding‐mode control of robot manipulators for high‐accuracy tracking control. IEEE Trans Ind Electron. 2009;56(9):3593‐3601. https://doi.org/10.1109/TIE.2009.2024097 · doi:10.1109/TIE.2009.2024097
[31] WangYY, LuoGS, GuLY, LiXD. Fractional‐order nonsingular terminal sliding mode control of hydraulic manipulators using time delay estimation. J Vib Control. 2016;22(19):3998‐4011. https://doi.org/10.1177/1077546315569518 · doi:10.1177/1077546315569518
[32] WangYY, GuLY, XuYH, CaoXX. Practical tracking control of robot manipulators with continuous fractional‐order nonsingular terminal sliding mode. IEEE Trans Ind Electron. 2016; 63(10):6194‐6204. https://doi.org/10.1109/TIE.2016.2569454 · doi:10.1109/TIE.2016.2569454
[33] KilbasAA, SrivastavaHM, TrujilloJJ. Fractional integrals and fractional derivatives. In: Theory and Applications of Fractional Differential Equations. 1st ed. Amsterdam, The Netherlands: Elsevier BV; 2006:69‐133. · Zbl 1092.45003
[34] ZhuZ, XiaYQ, FuMY. Attitude stabilization of rigid spacecraft with finite‐time convergence. Int J Robust Nonlinear Control. 2011;21(6):686‐702. https://doi.org/10.1002/rnc.1624 · Zbl 1214.93100 · doi:10.1002/rnc.1624
[35] YuSH, YuXH, ShirinzadehB, ManZH. Continuous finite‐time control for robotic manipulators with terminal sliding mode. Automatica. 2005;41(11):1957‐1964. https://doi.org/10.1016/j.automatica.2005.07.001 · Zbl 1125.93423 · doi:10.1016/j.automatica.2005.07.001
[36] FranklinGF, PowellJD, WorkmanML. Digital Control of Dynamic Systems. Reading, MA: Addison‐Wesley; 1998.
[37] KimJ, JoeH, YuS‐C, LeeJS, KimM. Time‐delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Trans Ind Electron. 2016;63(2):1052‐1061. https://doi.org/10.1109/TIE.2015.2477270 · doi:10.1109/TIE.2015.2477270
[38] SuW‐C, DrakunovSV, OzgunerU. An O(T^2) boundary layer in sliding mode for sampled‐data systems. IEEE Trans Autom Control. 2000;45(3):482‐485. https://doi.org/10.1109/9.847728 · Zbl 0972.93039 · doi:10.1109/9.847728
[39] SpongM, VidyasagarM. Robust linear compensator design for nonlinear robotic control. IEEE J Robot Autom. 1987;3(4):345‐351. https://doi.org/10.1109/JRA.1987.1087110 · doi:10.1109/JRA.1987.1087110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.