×

Accessibility measure for eternal inflation: dynamical criticality and Higgs metastability. (English) Zbl 1485.83151

Summary: We propose a new measure for eternal inflation, based on search optimization and first-passage statistics. This work builds on the dynamical selection mechanism for vacua based on search optimization proposed recently by the author and Parrikar. The approach is motivated by the possibility that eternal inflation has unfolded for a finite time much shorter than the exponentially long mixing time for the landscape. The proposed accessibility measure assigns greater weight to vacua that are accessed efficiently under time evolution. It is the analogue of the closeness centrality index widely used in network science. The proposed measure enjoys a number of desirable properties. It is independent of initial conditions and oblivious to physical vs comoving weighing of pocket universes. Importantly, the proposed measure makes concrete and testable predictions that are largely independent of anthropic reasoning. Firstly, it favors vacua residing in regions of the landscape with funnel-like topography, akin to the energy landscape of naturally-occurring proteins. Secondly, it favors regions of the landscape that are tuned at dynamical criticality, with vacua having an average lifetime of order the de Sitter Page time. Thus the predicted lifetime of our universe is of order its Page time, \(\sim 10^{130}\) years, which is compatible with Standard Model estimates for electroweak metastability. Relatedly, the supersymmetry breaking scale should be high, at least \(10^{10}\) GeV. The discovery of beyond-the-Standard Model particles at the Large Hadron Collider or future accelerators, including low-scale supersymmetry, would rule out the possibility that our vacuum lies in an optimal region of the landscape. The present framework suggests a correspondence between the near-criticality of our universe and dynamical critical phenomena on the string landscape.

MSC:

83F05 Relativistic cosmology
83E05 Geometrodynamics and the holographic principle
58J47 Propagation of singularities; initial value problems on manifolds
83E30 String and superstring theories in gravitational theory
80A10 Classical and relativistic thermodynamics
83C15 Exact solutions to problems in general relativity and gravitational theory
81R40 Symmetry breaking in quantum theory

References:

[1] Vilenkin, Alexander, The Birth of Inflationary Universes, Phys. Rev. D, 27, 2848 (1983) · doi:10.1103/PhysRevD.27.2848
[2] Linde, Andrei D., Eternal chaotic inflation, Mod. Phys. Lett. A, 1, 81 (1986) · doi:10.1142/S0217732386000129
[3] Linde, Andrei D., Eternally Existing Selfreproducing Chaotic Inflationary Universe, Phys. Lett. B, 175, 395-400 (1986) · doi:10.1016/0370-2693(86)90611-8
[4] Freivogel, Ben, Making predictions in the multiverse, Class. Quant. Grav., 28 (2011) · Zbl 1228.83127 · doi:10.1088/0264-9381/28/20/204007
[5] Bousso, Raphael; Polchinski, Joseph, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP, 06, 006 (2000) · Zbl 0990.83543 · doi:10.1088/1126-6708/2000/06/006
[6] Kachru, Shamit; Kallosh, Renata; Linde, Andrei D.; Trivedi, Sandip P., De Sitter vacua in string theory, Phys. Rev. D, 68 (2003) · Zbl 1244.83036 · doi:10.1103/PhysRevD.68.046005
[7] Susskind, Leonard; Carr, Bernard J., The Anthropic landscape of string theory (2003)
[8] Douglas, Michael R., The Statistics of string / M theory vacua, JHEP, 05, 046 (2003) · doi:10.1088/1126-6708/2003/05/046
[9] Obied, Georges; Ooguri, Hirosi; Spodyneiko, Lev; Vafa, Cumrun, De Sitter Space and the Swampland (2018)
[10] Agrawal, Prateek; Obied, Georges; Steinhardt, Paul J.; Vafa, Cumrun, On the Cosmological Implications of the String Swampland, Phys. Lett. B, 784, 271-276 (2018) · doi:10.1016/j.physletb.2018.07.040
[11] Garg, Sumit K.; Krishnan, Chethan, Bounds on Slow Roll and the de Sitter Swampland, JHEP, 11, 075 (2019) · doi:10.1007/JHEP11(2019)075
[12] Ooguri, Hirosi; Palti, Eran; Shiu, Gary; Vafa, Cumrun, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B, 788, 180-184 (2019) · doi:10.1016/j.physletb.2018.11.018
[13] Palti, Eran, The Swampland: Introduction and Review, Fortsch. Phys., 67 (2019) · Zbl 1427.81108 · doi:10.1002/prop.201900037
[14] Linde, Andrei D.; Mezhlumian, Arthur, Stationary universe, Phys. Lett. B, 307, 25-33 (1993) · doi:10.1016/0370-2693(93)90187-M
[15] Linde, Andrei D.; Linde, Dmitri A.; Mezhlumian, Arthur, From the Big Bang theory to the theory of a stationary universe, Phys. Rev. D, 49, 1783-1826 (1994) · doi:10.1103/PhysRevD.49.1783
[16] Garcia-Bellido, Juan; Linde, Andrei D.; Linde, Dmitri A., Fluctuations of the gravitational constant in the inflationary Brans-Dicke cosmology, Phys. Rev. D, 50, 730-750 (1994) · doi:10.1103/PhysRevD.50.730
[17] Vilenkin, Alexander, Predictions from quantum cosmology, Phys. Rev. Lett., 74, 846-849 (1995) · doi:10.1103/PhysRevLett.74.846
[18] De Simone, Andrea; Guth, Alan H.; Linde, Andrei D.; Noorbala, Mahdiyar; Salem, Michael P.; Vilenkin, Alexander, Boltzmann brains and the scale-factor cutoff measure of the multiverse, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.063520
[19] Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng, Properties of the scale factor measure, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.063513
[20] De Simone, Andrea; Guth, Alan H.; Salem, Michael P.; Vilenkin, Alexander, Predicting the cosmological constant with the scale-factor cutoff measure, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.063520
[21] Guth, Alan H.; Sola, Joan, Eternal inflation and its implications, J. Phys. A, 40, 6811-6826 (2007) · doi:10.1088/1751-8113/40/25/S25
[22] Vilenkin, Alexander; Yamada, Masaki, Four-volume cutoff measure of the multiverse, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.043520
[23] Garriga, Jaume; Vilenkin, Alexander, Recycling universe, Phys. Rev. D, 57, 2230-2244 (1998) · doi:10.1103/PhysRevD.57.2230
[24] Garriga, Jaume; Schwartz-Perlov, Delia; Vilenkin, Alexander; Winitzki, Sergei, Probabilities in the inflationary multiverse, JCAP, 01 (2006) · Zbl 1236.83021 · doi:10.1088/1475-7516/2006/01/017
[25] Vanchurin, Vitaly; Vilenkin, Alexander, Eternal observers and bubble abundances in the landscape, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.043520
[26] Bousso, Raphael, Holographic probabilities in eternal inflation, Phys. Rev. Lett., 97 (2006) · doi:10.1103/PhysRevLett.97.191302
[27] Bousso, Raphael, Complementarity in the Multiverse, Phys. Rev. D, 79 (2009) · Zbl 1186.83079 · doi:10.1103/PhysRevD.79.123524
[28] Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan; Rosenhaus, Vladimir, A geometric solution to the coincidence problem, and the size of the landscape as the origin of hierarchy, Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.101301
[29] Garriga, Jaume; Vilenkin, Alexander, Watchers of the multiverse, JCAP, 05 (2013) · doi:10.1088/1475-7516/2013/05/037
[30] Nomura, Yasunori, Physical Theories, Eternal Inflation, and Quantum Universe, JHEP, 11, 063 (2011) · Zbl 1306.83079 · doi:10.1007/JHEP11(2011)063
[31] Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun, Non-singular bounce transitions in the multiverse, JCAP, 11 (2013) · doi:10.1088/1475-7516/2013/11/055
[32] Bousso, Raphael; Yang, I-Sheng, Global-Local Duality in Eternal Inflation, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.124024
[33] L. da F. Costa, F.A. Rodrigues, G. Travieso and P.R.V. Boas, Characterization of complex networks: A survey of measurements, Adv. Phys.56 (2007) 167 [cond-mat/0505185]. · doi:10.1080/00018730601170527
[34] L. Katz, A new status index derived from sociometric analysis, Psychometrika18 (1953) 39. · Zbl 0053.27606 · doi:10.1007/bf02289026
[35] S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine, Computer Networks and ISDN Systems30 (1998) 107. · doi:10.1016/s0169-7552(98)00110-x
[36] A. Bavelas, Communication patterns in task-oriented groups, J. Acoust. Soc. Am.22 (1950) 725. · doi:10.1121/1.1906679
[37] G. Sabidussi, The centrality index of a graph, Psychometrika31 (1966) 581. · Zbl 0152.22703 · doi:10.1007/bf02289527
[38] Borde, Arvind; Guth, Alan H.; Vilenkin, Alexander, Inflationary space-times are incompletein past directions, Phys. Rev. Lett., 90 (2003) · doi:10.1103/PhysRevLett.90.151301
[39] Denef, Frederik, TASI lectures on complex structures (2011)
[40] Denef, Frederik; Douglas, Michael R.; Greene, Brian; Zukowski, Claire, Computational complexity of the landscape II—Cosmological considerations, Annals Phys., 392, 93-127 (2018) · Zbl 1390.83337 · doi:10.1016/j.aop.2018.03.013
[41] Khoury, Justin; Parrikar, Onkar, Search Optimization, Funnel Topography, and Dynamical Criticality on the String Landscape, JCAP, 12 (2019) · Zbl 1542.83030 · doi:10.1088/1475-7516/2019/12/014
[42] A. Samarakoon, T.J. Sato, T. Chen, G.-W. Chern, J. Yang, I. Klich et al., Aging, memory, and nonhierarchical energy landscape of spin jam, Proc. Natl. Acad. Sci.113 (2016) 11806 [1707.03086]. · doi:10.1073/pnas.1608057113
[43] J.D. Bryngelson, J.N. Onuchic, N.D. Socci and P.G. Wolynes, Funnels, pathways, and the energy landscape of protein folding: A synthesis, Proteins: Structure, Function, and Genetics21 (1995) 167 [chem-ph/9411008]. · doi:10.1002/prot.340210302
[44] N. Go, Theoretical studies of protein folding, Annu. Rev. Biophys. Bioeng.12 (1983) 183. · doi:10.1146/annurev.bb.12.060183.001151
[45] S. Redner, A Guide to First-Passage Processes, Cambridge University Press (2001). · Zbl 0980.60006
[46] V. Tejedor, O. Bénichou and R. Voituriez, Global mean first-passage times of random walks on complex networks, Physical Review E80 (2009) 065104 [0909.0657]. · doi:10.1103/physreve.80.065104
[47] J.D. Noh and H. Rieger, Random walks on complex networks, Phys. Rev. Lett.92 (2004) 118701. · doi:10.1103/physrevlett.92.118701
[48] A.-M. Kermarrec, E.L. Merrer, B. Sericola and G. Trédan, Second order centrality: Distributed assessment of nodes criticity in complex networks, Comput. Commun.34 (2011) 619. · doi:10.1016/j.comcom.2010.06.007
[49] J.C. Mauro and M.M. Smedskjaer, Statistical mechanics of glass, J. Non-Cryst. Solid.396-397 (2014) 41. · doi:10.1016/j.jnoncrysol.2014.04.009
[50] Andreassen, Anders; Frost, William; Schwartz, Matthew D., Scale Invariant Instantons and the Complete Lifetime of the Standard Model, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.056006
[51] Elias-Miro, Joan; Espinosa, Jose R.; Giudice, Gian F.; Isidori, Gino; Riotto, Antonio; Strumia, Alessandro, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B, 709, 222-228 (2012) · doi:10.1016/j.physletb.2012.02.013
[52] Espinosa, Jose R.; Giudice, Gian F.; Morgante, Enrico; Riotto, Antonio; Senatore, Leonardo; Strumia, Alessandro, The cosmological Higgstory of the vacuum instability, JHEP, 09, 174 (2015) · Zbl 1388.83910 · doi:10.1007/JHEP09(2015)174
[53] Fumagalli, Jacopo; Renaux-Petel, Sébastien; Ronayne, John W., Higgs vacuum (in)stability during inflation: the dangerous relevance of de Sitter departure and Planck-suppressed operators, JHEP, 02, 142 (2020) · Zbl 1435.85010 · doi:10.1007/JHEP02(2020)142
[54] Denef, Frederik; Douglas, Michael R., Computational complexity of the landscape. I., Annals Phys., 322, 1096-1142 (2007) · Zbl 1113.83007 · doi:10.1016/j.aop.2006.07.013
[55] Arkani-Hamed, Nima; Dimopoulos, Savas; Kachru, Shamit, Predictive landscapes and new physics at a TeV (2005)
[56] Bao, Ning; Bousso, Raphael; Jordan, Stephen; Lackey, Brad, Fast optimization algorithms and the cosmological constant, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.103512
[57] Halverson, James; Ruehle, Fabian, Computational Complexity of Vacua and Near-Vacua in Field and String Theory, Phys. Rev. D, 99 (2019) · Zbl 1416.83125 · doi:10.1103/PhysRevD.99.046015
[58] Cvetic, Mirjam; Garcia-Etxebarria, Inaki; Halverson, James, On the computation of non-perturbative effective potentials in the string theory landscape: IIB/F-theory perspective, Fortsch. Phys., 59, 243-283 (2011) · Zbl 1209.81162 · doi:10.1002/prop.201000093
[59] Halverson, James; Plesser, Michael; Ruehle, Fabian; Tian, Jiahua, Kähler Moduli Stabilization and the Propagation of Decidability, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.046010
[60] Carifio, Jonathan; Cunningham, William J.; Halverson, James; Krioukov, Dmitri; Long, Cody; Nelson, Brent D., Vacuum Selection from Cosmology on Networks of String Geometries, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.101602
[61] He, Yang-Hui, Deep-Learning the Landscape (2017)
[62] Krefl, Daniel; Seong, Rak-Kyeong, Machine Learning of Calabi-Yau Volumes, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.066014
[63] Ruehle, Fabian, Evolving neural networks with genetic algorithms to study the String Landscape, JHEP, 08, 038 (2017) · Zbl 1381.83128 · doi:10.1007/JHEP08(2017)038
[64] Carifio, Jonathan; Halverson, James; Krioukov, Dmitri; Nelson, Brent D., Machine Learning in the String Landscape, JHEP, 09, 157 (2017) · Zbl 1382.81155 · doi:10.1007/JHEP09(2017)157
[65] Wang, Yi-Nan; Zhang, Zhibai, Learning non-Higgsable gauge groups in 4D F-theory, JHEP, 08, 009 (2018) · doi:10.1007/JHEP08(2018)009
[66] Klaewer, Daniel; Schlechter, Lorenz, Machine Learning Line Bundle Cohomologies of Hypersurfaces in Toric Varieties, Phys. Lett. B, 789, 438-443 (2019) · Zbl 1406.14001 · doi:10.1016/j.physletb.2019.01.002
[67] Mütter, Andreas; Parr, Erik; Vaudrevange, Patrick K. S., Deep learning in the heterotic orbifold landscape, Nucl. Phys. B, 940, 113-129 (2019) · Zbl 1409.81099 · doi:10.1016/j.nuclphysb.2019.01.013
[68] Cole, Alex; Shiu, Gary, Topological Data Analysis for the String Landscape, JHEP, 03, 054 (2019) · Zbl 1414.83083 · doi:10.1007/JHEP03(2019)054
[69] Halverson, James; Nelson, Brent; Ruehle, Fabian, Branes with Brains: Exploring String Vacua with Deep Reinforcement Learning, JHEP, 06, 003 (2019) · Zbl 1416.83125 · doi:10.1007/JHEP06(2019)003
[70] He, Yang-Hui; Lee, Seung-Joo, Distinguishing elliptic fibrations with AI, Phys. Lett. B, 798 (2019) · doi:10.1016/j.physletb.2019.134889
[71] Cole, Alex; Schachner, Andreas; Shiu, Gary, Searching the Landscape of Flux Vacua with Genetic Algorithms, JHEP, 11, 045 (2019) · Zbl 1429.83085 · doi:10.1007/JHEP11(2019)045
[72] S. Havlin and D. Ben-Avraham, Diffusion in disordered media, Adv. Phys.36 (1987) 695. · Zbl 1075.82001 · doi:10.1080/00018738700101072
[73] Coleman, Sidney R., The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D, 15, 2929-2936 (1977) · doi:10.1103/PhysRevD.16.1248
[74] Callan, Curtis G. Jr.; Coleman, Sidney R., The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev. D, 16, 1762-1768 (1977) · doi:10.1103/PhysRevD.16.1762
[75] Coleman, Sidney R.; De Luccia, Frank, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D, 21, 3305 (1980) · doi:10.1103/PhysRevD.21.3305
[76] Lee, Ki-Myeong; Weinberg, Erick J., Decay of the True Vacuum in Curved Space-time, Phys. Rev. D, 36, 1088 (1987) · doi:10.1103/PhysRevD.36.1088
[77] Schwartz-Perlov, Delia; Vilenkin, Alexander, Probabilities in the Bousso-Polchinski multiverse, JCAP, 06 (2006) · Zbl 1236.83021 · doi:10.1088/1475-7516/2006/06/010
[78] Olum, Ken D.; Schwartz-Perlov, Delia, Anthropic prediction in a large toy landscape, JCAP, 10 (2007) · doi:10.1088/1475-7516/2007/10/010
[79] Vennin, Vincent; Starobinsky, Alexei A., Correlation Functions in Stochastic Inflation, Eur. Phys. J. C, 75, 413 (2015) · doi:10.1140/epjc/s10052-015-3643-y
[80] Assadullahi, Hooshyar; Firouzjahi, Hassan; Noorbala, Mahdiyar; Vennin, Vincent; Wands, David, Multiple Fields in Stochastic Inflation, JCAP, 06 (2016) · Zbl 1527.83157 · doi:10.1088/1475-7516/2016/06/043
[81] Vennin, Vincent; Assadullahi, Hooshyar; Firouzjahi, Hassan; Noorbala, Mahdiyar; Wands, David, Critical Number of Fields in Stochastic Inflation, Phys. Rev. Lett., 118 (2017) · Zbl 1527.83157 · doi:10.1103/PhysRevLett.118.031301
[82] Noorbala, Mahdiyar; Vennin, Vincent; Assadullahi, Hooshyar; Firouzjahi, Hassan; Wands, David, Tunneling in Stochastic Inflation, JCAP, 09 (2018) · Zbl 1527.83157 · doi:10.1088/1475-7516/2018/09/032
[83] M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc.53 (1947) 1002. · Zbl 0032.41802
[84] J.G. Kemeny and J.L. Snell, Finite Markov Chains, Van Nostrand Comp. Int., New York (1960). · Zbl 0089.13704
[85] S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez and J. Klafter, First-passage times in complex scale-invariant media, Nature450 (2007) 77. · doi:10.1038/nature06201
[86] T.M. Michelitsch, B.A. Collet, A.P. Riascos, A.F. Nowakowski and F.C.G.A. Nicolleau, Recurrence of random walks with long-range steps generated by fractional laplacian matrices on regular networks and simple cubic lattices, J. Phys. A50 (2017) 505004 [1707.05843]. · Zbl 1394.82009 · doi:10.1088/1751-8121/aa9008
[87] Weinberg, Steven, A Priori probability distribution of the cosmological constant, Phys. Rev. D, 61 (2000) · doi:10.1103/PhysRevD.61.103505
[88] Page, Don N., Information in black hole radiation, Phys. Rev. Lett., 71, 3743-3746 (1993) · Zbl 0972.83567 · doi:10.1103/PhysRevLett.71.3743
[89] Danielsson, Ulf H.; Domert, Daniel; Olsson, Martin E., Miracles and complementarity in de Sitter space, Phys. Rev. D, 68 (2003) · doi:10.1103/PhysRevD.68.083508
[90] Danielsson, Ulf H.; Olsson, Martin E., On thermalization in de Sitter space, JHEP, 03, 036 (2004) · doi:10.1088/1126-6708/2004/03/036
[91] Ferreira, Ricardo Z.; Sandora, McCullen; Sloth, Martin S., Asymptotic Symmetries in de Sitter and Inflationary Spacetimes, JCAP, 04 (2017) · Zbl 1515.83343 · doi:10.1088/1475-7516/2017/04/033
[92] Ferreira, Ricardo Z.; Sandora, McCullen; Sloth, Martin S., Patient Observers and Non-perturbative Infrared Dynamics in Inflation, JCAP, 02 (2018) · Zbl 1527.83129 · doi:10.1088/1475-7516/2018/02/055
[93] Creminelli, Paolo; Dubovsky, Sergei; Nicolis, Alberto; Senatore, Leonardo; Zaldarriaga, Matias, The Phase Transition to Slow-roll Eternal Inflation, JHEP, 09, 036 (2008) · Zbl 1245.83085 · doi:10.1088/1126-6708/2008/09/036
[94] Arkani-Hamed, Nima; Dubovsky, Sergei; Nicolis, Alberto; Trincherini, Enrico; Villadoro, Giovanni, A Measure of de Sitter entropy and eternal inflation, JHEP, 05, 055 (2007) · doi:10.1088/1126-6708/2007/05/055
[95] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman and L. Troyansky, Determining computational complexity from characteristic “phase transitions”, Nature 400 (1999) 133. · Zbl 1369.68244 · doi:10.1038/22055
[96] T. Hogg, B.A. Huberman and C.P. Williams, Phase transitions and the search problem, Artificial Intelligence81 (1996) 1. · Zbl 1508.68334 · doi:10.1016/0004-3702(95)00044-5
[97] B.A. Huberman and T. Hogg, Phase transitions in artificial intelligence systems, Artificial Intelligence33 (1987) 155. · doi:10.1016/0004-3702(87)90033-6
[98] T. Mora and W. Bialek, Are biological systems poised at criticality?, J. Stat. Phys.144 (2011) 268 [1012.2242]. · Zbl 1226.82005 · doi:10.1007/s10955-011-0229-4
[99] M. Usher, M. Stemmler and Z. Olami, Dynamic pattern formation leads to1fnoise in neural populations, Phys. Rev. Lett.74 (1995) 326. · doi:10.1103/physrevlett.74.326
[100] O. Kinouchi and M. Copelli, Optimal dynamical range of excitable networks at criticality, Nat. Phys.2 (2006) 348 [q-bio/0601037]. · doi:10.1038/nphys289
[101] J.M. Beggs and D. Plenz, Neuronal avalanches in neocortical circuits, J. Neurosci.23 (2003) 11167. · doi:10.1523/jneurosci.23-35-11167.2003
[102] D.R. Chialvo, Emergent complex neural dynamics, Nature Physics6 (2010) 744 [1010.2530]. · doi:10.1038/nphys1803
[103] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini et al., Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci.107 (2010) 11865. · doi:10.1073/pnas.1005766107
[104] W. Bialek, A. Cavagna, I. Giardina, T. Mora, E. Silvestri, M. Viale et al., Statistical mechanics for natural flocks of birds, Proc. NatlȦcad. Sci.109 (2012) 4786 [1107.0604]. · doi:10.1073/pnas.1118633109
[105] A. Roli, M. Villani, A. Filisetti and R. Serra, Dynamical criticality: Overview and open questions, J. Syst. Sci. Complex.31 (2017) 647. · Zbl 1401.93007 · doi:10.1007/s11424-017-6117-5
[106] S. A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, Oxford (1993).
[107] S. Wolfram, Universality and complexity in cellular automata, Phys. D10 (1984) 1. · Zbl 0562.68040 · doi:10.1016/0167-2789(84)90245-8
[108] N. H. Packard, Adaptation toward the edge of chaos, in Dynamic Patterns in Complex Systems, World Scientific (1988), p. 293.
[109] C.G. Langton, Computation at the edge of chaos: Phase transitions and emergent computation, Phys. D42 (1990) 12. · doi:10.1016/0167-2789(90)90064-v
[110] J.P. Crutchfield and K. Young, Inferring statistical complexity, Phys. Rev. Lett.63 (1989) 105. · doi:10.1103/physrevlett.63.105
[111] J. P. Crutchfield and K. Young, Computation at the onset of chaos, in Complexity, Entropy, and the Physics of Information, W.H. Zurek ed., Addison-Wesley (1990), pp. 223-269.
[112] M. Mitchell, P. Hraber and J. P. Crutchfield, Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations, Complex Syst.7 (1993) 89 [arXividadap-org/9303003]. · Zbl 0834.68086
[113] N. Bertschinger and T. Natschläger, Real-time computation at the edge of chaos in recurrent neural networks, Neural Comput.16 (2004) 1413. · Zbl 1102.68530 · doi:10.1162/089976604323057443
[114] J. Boedecker, O. Obst, J.T. Lizier, N.M. Mayer and M. Asada, Information processing in echo state networks at the edge of chaos, Theory Biosci.131 (2011) 205. · doi:10.1007/s12064-011-0146-8
[115] F. Matzner, Neuroevolution on the edge of chaos, in Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15-19 July 2017, pp. 465-472. · doi:10.1145/3071178.3071292
[116] C. H. Martin and M. W. Mahoney, Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning, 1810.01075. · Zbl 07415108
[117] D. Sornette, Critical phenomena in natural sciences: chaos, fractals, self-organization and disorder: concepts and tools, Springer-Verlag, Berlin (2006). · Zbl 1094.82001
[118] Gunion, J. F.; Haber, H. E.; Sher, M., Charge / Color Breaking Minima and a-Parameter Bounds in Supersymmetric Models, Nucl. Phys. B, 306, 1-13 (1988) · doi:10.1016/0550-3213(88)90168-X
[119] Giudice, Gian F.; Strumia, Alessandro, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B, 858, 63-83 (2012) · Zbl 1246.81088 · doi:10.1016/j.nuclphysb.2012.01.001
[120] Hertzberg, Mark P., A Correlation Between the Higgs Mass and Dark Matter, Adv. High Energy Phys., 2017 (2017) · doi:10.1155/2017/6295927
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.