×

Patient observers and non-perturbative infrared dynamics in inflation. (English) Zbl 1527.83129

Summary: We have previously derived the effect of soft graviton modes on the quantum state of de Sitter using spontaneously broken asymptotic symmetries. In the present paper we prove that this effect can be reinterpreted in terms of Bogoliubov transformations acting on the quantum state. This also enables us to address the much discussed issues regarding the observability of infrared effects in de Sitter from a new perspective. While it is commonly agreed that infrared effects are not visible to a single sub-horizon observer at late times, we argue that the question is less trivial for a patient observer who has lived long enough to have a record of the state before the soft mode was created. Though classically there is no obstruction to measuring this effect locally, we give several indications that quantum mechanical uncertainties may censor the effect. We then apply our methods to find a non-perturbative description of the quantum state pertaining to the Page time of de Sitter, and derive with these new methods the probability distribution for the local quantum states of de Sitter and slow-roll inflation in the presence of long modes. Finally, we show that this formalism reproduces and generalizes the usual criterion for the presence of eternal inflation in general classes of slow-roll inflation.

MSC:

83F05 Relativistic cosmology

References:

[1] A.A. Starobinsky, 1979 Spectrum of relict gravitational radiation and the early state of the universe JETP Lett.30 682
[2] V.F. Mukhanov and G.V. Chibisov, 1981 Quantum Fluctuations and a Nonsingular Universe JETP Lett.33 532
[3] A.D. Linde, 1984 The Inflationary Universe, https://doi.org/10.1088/0034-4885/47/8/002 Rept. Prog. Phys.47 925 · doi:10.1088/0034-4885/47/8/002
[4] A.D. Linde, 1986 Eternally Existing Selfreproducing Chaotic Inflationary Universe, https://doi.org/10.1016/0370-2693(86)90611-8 Phys. Lett. B 175 395 · doi:10.1016/0370-2693(86)90611-8
[5] A.A. Starobinsky, 1986 Stochastic de Sitter (inflationary) stage in the early universe, https://doi.org/10.1007/3-540-16452-9_6 Lect. Notes Phys.246 107 · doi:10.1007/3-540-16452-9_6>
[6] A.A. Starobinsky and J. Yokoyama, 1994 Equilibrium state of a selfinteracting scalar field in the de Sitter background, https://doi.org/10.1103/PhysRevD.50.6357 Phys. Rev. D 50 6357 [astro-ph/9407016] · doi:10.1103/PhysRevD.50.6357
[7] S.B. Giddings and M.S. Sloth, 2011 Semiclassical relations and IR effects in de Sitter and slow-roll space-times J. Cosmol. Astropart. Phys.2011 01 023 [1005.1056]
[8] S.B. Giddings and M.S. Sloth, 2010 Cosmological diagrammatic rules J. Cosmol. Astropart. Phys.2010 07 015 [1005.3287]
[9] S.B. Giddings and M.S. Sloth, 2012 Fluctuating geometries, q-observables and infrared growth in inflationary spacetimes, https://doi.org/10.1103/PhysRevD.86.083538 Phys. Rev. D 86 083538 [1109.1000] · doi:10.1103/PhysRevD.86.083538
[10] S.B. Giddings and M.S. Sloth, 2011 Cosmological observables, IR growth of fluctuations and scale-dependent anisotropies, https://doi.org/10.1103/PhysRevD.84.063528 Phys. Rev. D 84 063528 [1104.0002] · doi:10.1103/PhysRevD.84.063528
[11] A. Riotto and M.S. Sloth, 2011 The probability equation for the cosmological comoving curvature perturbation J. Cosmol. Astropart. Phys.2011 10 003 [1103.5876]
[12] V. Vennin and A.A. Starobinsky, 2015 Correlation Functions in Stochastic Inflation, https://doi.org/10.1140/epjc/s10052-015-3643-y Eur. Phys. J. C 75 413 [1506.04732] · doi:10.1140/epjc/s10052-015-3643-y
[13] R.Z. Ferreira, M. Sandora and M.S. Sloth, 2017 Asymptotic Symmetries in de Sitter and Inflationary Spacetimes J. Cosmol. Astropart. Phys.2017 04 033 [1609.06318] · Zbl 1515.83343
[14] G. Dvali and C. Gomez, 2014 Quantum Compositeness of Gravity: Black Holes, AdS and Inflation J. Cosmol. Astropart. Phys.2014 01 023 [1312.4795]
[15] G. Dvali and C. Gomez, 2016 Quantum Exclusion of Positive Cosmological Constant?, https://doi.org/10.1002/andp.201500216 Annalen Phys.528 68 [1412.8077] · doi:10.1002/andp.201500216
[16] G. Dvali, C. Gomez and S. Zell, 2017 Quantum Break-Time of de Sitter J. Cosmol. Astropart. Phys.2017 06 028 [1701.08776] · Zbl 1515.83220
[17] U.H. Danielsson and M.E. Olsson, 2004 On thermalization in de Sitter space J. High Energy Phys. JHEP03(2004)036 [hep-th/0309163]
[18] A.A. Starobinsky, 1983 Isotropization of arbitrary cosmological expansion given an effective cosmological constant JETP Lett.37 66
[19] A. Strominger and A. Zhiboedov, 2016 Gravitational Memory, BMS Supertranslations and Soft Theorems J. High Energy Phys. JHEP01(2016)086 [1411.5745] · Zbl 1388.83072 · doi:10.1007/JHEP01(2016)086
[20] L. Susskind, Electromagnetic Memory, [1507.02584]
[21] F. Finelli, G. Marozzi, A.A. Starobinsky, G.P. Vacca and G. Venturi, 2009 Generation of fluctuations during inflation: Comparison of stochastic and field-theoretic approaches, https://doi.org/10.1103/PhysRevD.79.044007 Phys. Rev. D 79 044007 [0808.1786] · doi:10.1103/PhysRevD.79.044007
[22] T. Tanaka and Y. Urakawa, 2013 Loops in inflationary correlation functions, https://doi.org/10.1088/0264-9381/30/23/233001 Class. Quant. Grav.30 233001 [1306.4461] · Zbl 1284.83013 · doi:10.1088/0264-9381/30/23/233001
[23] Y. Urakawa and T. Tanaka, 2010 IR divergence does not affect the gauge-invariant curvature perturbation, https://doi.org/10.1103/PhysRevD.82.121301 Phys. Rev. D 82 121301 [1007.0468] · doi:10.1103/PhysRevD.82.121301
[24] T. Tanaka and Y. Urakawa, 2013 Strong restriction on inflationary vacua from the local gauge invariance I: Local gauge invariance and infrared regularity, https://doi.org/10.1093/ptep/ptt057 PTEP2013 083E01 [1209.1914] · Zbl 07406703 · doi:10.1093/ptep/ptt057
[25] C.T. Byrnes, M. Gerstenlauer, A. Hebecker, S. Nurmi and G. Tasinato, 2010 Inflationary Infrared Divergences: Geometry of the Reheating Surface versus δ N Formalism J. Cosmol. Astropart. Phys.2010 08 006 [1005.3307]
[26] M. Gerstenlauer, A. Hebecker and G. Tasinato, 2011 Inflationary Correlation Functions without Infrared Divergences J. Cosmol. Astropart. Phys.2011 06 021 [1102.0560]
[27] M.B. Fröb, D.B. Papadopoulos, A. Roura and E. Verdaguer, 2013 Nonperturbative semiclassical stability of de Sitter spacetime for small metric deviations, https://doi.org/10.1103/PhysRevD.87.064019 Phys. Rev. D 87 064019 [1301.5261] · doi:10.1103/PhysRevD.87.064019
[28] C.P. Burgess, R. Holman and G. Tasinato, 2016 Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation J. High Energy Phys. JHEP01(2016)153 [1512.00169] · doi:10.1007/JHEP01(2016)153
[29] J.M. Maldacena, 2003 Non-Gaussian features of primordial fluctuations in single field inflationary models J. High Energy Phys. JHEP05(2003)013 [astro-ph/0210603]
[30] D. Seery, M.S. Sloth and F. Vernizzi, 2009 Inflationary trispectrum from graviton exchange J. Cosmol. Astropart. Phys.2009 03 018 [0811.3934]
[31] K. Hinterbichler, L. Hui and J. Khoury, 2012 Conformal Symmetries of Adiabatic Modes in Cosmology J. Cosmol. Astropart. Phys.2012 08 017 [1203.6351]
[32] K. Hinterbichler, L. Hui and J. Khoury, 2014 An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology J. Cosmol. Astropart. Phys.2014 01 039 [1304.5527]
[33] A. Kehagias and A. Riotto, 2017 Inflation and Conformal Invariance: The Perspective from Radial Quantization, https://doi.org/10.1002/prop.201700023 Fortsch. Phys.65 1700023 [1701.05462] · Zbl 1371.83209 · doi:10.1002/prop.201700023
[34] S.M. Barnett and P.M. Radmore, 2002 Methods in Theoretical Quantum Optics, vol. 15, Oxford University Press · Zbl 1027.81044 · doi:10.1093/acprof:oso/9780198563617.001.0001
[35] G. Geshnizjani and R. Brandenberger, 2005 Back reaction of perturbations in two scalar field inflationary models J. Cosmol. Astropart. Phys.2005 04 006 [hep-th/0310265]
[36] L.R. Abramo and R.P. Woodard, 2002 Back reaction is for real, https://doi.org/10.1103/PhysRevD.65.063516 Phys. Rev. D 65 063516 [astro-ph/0109273] · doi:10.1103/PhysRevD.65.063516
[37] B. Bonga, S. Brahma, A.-S. Deutsch and S. Shandera, 2016 Cosmic variance in inflation with two light scalars J. Cosmol. Astropart. Phys.2016 05 018 [1512.05365]
[38] W. Unruh, Cosmological long wavelength perturbations, [astro-ph/9802323]
[39] L.R. Abramo and R.P. Woodard, 2002 No one loop back reaction in chaotic inflation, https://doi.org/10.1103/PhysRevD.65.063515 Phys. Rev. D 65 063515 [astro-ph/0109272] · doi:10.1103/PhysRevD.65.063515
[40] G. Geshnizjani and R. Brandenberger, 2002 Back reaction and local cosmological expansion rate, https://doi.org/10.1103/PhysRevD.66.123507 Phys. Rev. D 66 123507 [gr-qc/0204074] · doi:10.1103/PhysRevD.66.123507
[41] N.C. Tsamis and R.P. Woodard, 2005 A Measure of cosmological acceleration, https://doi.org/10.1088/0264-9381/22/19/024 Class. Quant. Grav.22 4171 [gr-qc/0506089] · Zbl 1075.83573 · doi:10.1088/0264-9381/22/19/024
[42] B. Losic and W.G. Unruh, 2005 Long-wavelength metric backreactions in slow-roll inflation, https://doi.org/10.1103/PhysRevD.72.123510 Phys. Rev. D 72 123510 [gr-qc/0510078] · doi:10.1103/PhysRevD.72.123510
[43] M. Gasperini, G. Marozzi and G. Veneziano, 2009 Gauge invariant averages for the cosmological backreaction J. Cosmol. Astropart. Phys.2009 03 011 [0901.1303]
[44] M.B. Fröb, T.-P. Hack and A. Higuchi, 2017 Compactly supported linearised observables in single-field inflation J. Cosmol. Astropart. Phys.2017 07 043 [1703.01158] · Zbl 1515.83351
[45] F. Dyson, 2013 Is a graviton detectable?, https://doi.org/10.1142/S0217751X1330041X Int. J. Mod. Phys. A 28 1330041 · doi:10.1142/S0217751X1330041X
[46] J. Garriga and T. Tanaka, 2008 Can infrared gravitons screen Lambda?, https://doi.org/10.1103/PhysRevD.77.024021 Phys. Rev. D 77 024021 [0706.0295] · doi:10.1103/PhysRevD.77.024021
[47] N.C. Tsamis and R.P. Woodard, 2008 Comment on “Can infrared gravitons screen Lambda?”, https://doi.org/10.1103/PhysRevD.78.028501 Phys. Rev. D 78 028501 [0708.2004] · doi:10.1103/PhysRevD.78.028501
[48] E. Ruiz, F. Giacomini and C. Brukner, 2017 Entanglement of quantum clocks through gravity, https://doi.org/10.1073/pnas.1616427114 Proc. Nat. Acad. Sci.114 E2303 [1507.01955] · Zbl 1404.83028 · doi:10.1073/pnas.1616427114
[49] N.C. Tsamis and R.P. Woodard, 2011 A Gravitational Mechanism for Cosmological Screening, https://doi.org/10.1142/S0218271811020652 Int. J. Mod. Phys. D 20 2847 [1103.5134] · Zbl 1263.83203 · doi:10.1142/S0218271811020652
[50] S. Basu, N.C. Tsamis and R.P. Woodard, 2017 Causality Implies Inflationary Back-Reaction J. High Energy Phys. JHEP07(2017)037 [1612.07406] · Zbl 1380.83295 · doi:10.1007/JHEP07(2017)037
[51] F.J. Dyson, 1979 Time without end: Physics and biology in an open universe, https://doi.org/10.1103/RevModPhys.51.447 Rev. Mod. Phys.51 447 · doi:10.1103/RevModPhys.51.447
[52] J. Steinhauer, 2014 Observation of self-amplifying Hawking radiation in an analog black hole laser, https://doi.org/10.1038/NPHYS3104 Nature Phys.10 864 [1409.6550] · doi:10.1038/NPHYS3104
[53] A.A. Starobinsky, 1985 Cosmic Background Anisotropy Induced by Isotropic Flat-Spectrum Gravitational-Wave Perturbations Sov Astron. Lett.11 133
[54] Planck collaboration, P.A.R. Ade et al., 2014 Planck 2013 results. XVI. Cosmological parameters, https://doi.org/10.1051/0004-6361/201321591 Astron. Astrophys.571 A16 [1303.5076] · doi:10.1051/0004-6361/201321591
[55] BICEP2, Keck Array collaborations, P.A.R. Ade et al., 2016 Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band, https://doi.org/10.1103/PhysRevLett.116.031302 Phys. Rev. Lett.116 031302 [1510.09217] · doi:10.1103/PhysRevLett.116.031302
[56] X. Gao, H. Xu and D. Ye, 2008 Asymptotic behavior of tail density for sum of correlated lognormal variables, Int. J. Math. Math. Sci.2009 630857 · Zbl 1177.60015 · doi:10.1155/2009/630857
[57] N. Bartolo, S. Matarrese, M. Pietroni, A. Riotto and D. Seery, 2008 On the Physical Significance of Infra-red Corrections to Inflationary Observables J. Cosmol. Astropart. Phys.2008 01 015 [0711.4263]
[58] D.S. Salopek and J.R. Bond, 1991 Stochastic inflation and nonlinear gravity, https://doi.org/10.1103/PhysRevD.43.1005 Phys. Rev. D 43 1005 · doi:10.1103/PhysRevD.43.1005
[59] D.S. Salopek and J.R. Bond, 1990 Nonlinear evolution of long wavelength metric fluctuations in inflationary models, https://doi.org/10.1103/PhysRevD.42.3936 Phys. Rev. D 42 3936 · doi:10.1103/PhysRevD.42.3936
[60] P. Creminelli, S. Dubovsky, A. Nicolis, L. Senatore and M. Zaldarriaga, 2008 The Phase Transition to Slow-roll Eternal Inflation J. High Energy Phys. JHEP09(2008)036 [0802.1067]
[61] G. Barenboim, W.-I. Park and W.H. Kinney, 2016 Eternal Hilltop Inflation J. Cosmol. Astropart. Phys.2016 05 030 [1601.08140]
[62] M. Aryal and A. Vilenkin, 1987 The Fractal Dimension of Inflationary Universe, https://doi.org/10.1016/0370-2693(87)90932-4 Phys. Lett. B 199 351 · doi:10.1016/0370-2693(87)90932-4
[63] A. Vilenkin, 1992 Did the universe have a beginning?, https://doi.org/10.1103/PhysRevD.46.2355 Phys. Rev. D 46 2355 · doi:10.1103/PhysRevD.46.2355
[64] S. Winitzki, 2002 The Eternal fractal in the universe, https://doi.org/10.1103/PhysRevD.65.083506 Phys. Rev. D 65 083506 [gr-qc/0111048] · doi:10.1103/PhysRevD.65.083506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.