×

Building manifolds from quantum codes. (English) Zbl 1485.53115

Summary: We give a procedure for “reverse engineering” a closed, simply connected, Riemannian manifold with bounded local geometry from a sparse chain complex over \({\mathbb{Z}} \). Applying this procedure to chain complexes obtained by “lifting” recently developed quantum codes, which correspond to chain complexes over \({\mathbb{Z}}_2\), we construct the first examples of power law \({\mathbb{Z}}_2\) systolic freedom. As a result that may be of independent interest in graph theory, we give an efficient randomized algorithm to construct a weakly fundamental cycle basis for a graph, such that each edge appears only polylogarithmically times in the basis. We use this result to trivialize the fundamental group of the manifold we construct.

MSC:

53Z50 Applications of differential geometry to data and computer science
81P73 Computational stability and error-correcting codes for quantum computation and communication processing
94B27 Geometric methods (including applications of algebraic geometry) applied to coding theory
05C38 Paths and cycles

References:

[1] N. Breuckman and J. Eberhardt. Balanced product quantum codes, arXiv:2012.09271 (2020)
[2] S. Bravyi and M.B. Hastings, Homological product codes. Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, 273-282, 1311.0885 (2014). · Zbl 1315.94143
[3] I. Babenko, M. Katz. Systolic freedom of orientable manifolds. Annales scientifiques de lecole normale supérieure, 31 (1998), 787-809 · Zbl 0944.53019
[4] T. Colding and W. Minicozzi. A Course in Minimal Surfaces. Graduate Studies in Mathematics, American Mathematical Soc., 121 (2011). · Zbl 1242.53007
[5] H. Federer. Geometric Measure Theory. Classics in Mathematics, Springer-Verlag (1969). · Zbl 0176.00801
[6] M. Freedman, D. Meyer and F. Luo. \({\mathbb{Z}}_2\)-Systolic Freedom and Quantum Codes. Mathematics of Quantum Computation, Brylinski, Ranee K, Chen, Goong, CRC Press, 287-320 (2002). · Zbl 1075.81508
[7] M. Freedman. \({\mathbb{Z}}_2\)-Systolic Freedom. Geometry and Topology Monographs, 2, 113-123 (1999). · Zbl 1024.53029
[8] M. Gromov and L. Guth. Generalizations of the Kolmogorov-Barzdin embedding estimates. Duke Mathematical Journal, 161(13) (2002), 2549-2603 · Zbl 1261.53041
[9] L. Guth and A. Lubotzky. Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds. Journal of Mathematical Physics, 55(8) (2014), 082202 · Zbl 1298.81052
[10] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces. Springer Science & Business Media (2007). · Zbl 1113.53001
[11] M. Gromov. Systoles and intersystolic inequalities. Actes de la Table Ronde de Géométrie Différentielle, 1 (1996), 291-362 · Zbl 0877.53002
[12] M. Gromov, J. LaFontaine, and P. Pansu, translated by Bates, S.M., Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser Basel (1999). · Zbl 0953.53002
[13] M.B. Hastings. Weight reduction for quantum codes. Quantum Information & Computation, 17(15-16) (2017), 1307-1334
[14] M.B. Hastings, J. Haah and R. O’Donnell. Fiber bundle codes: Breaking the \(N^{1/2} \operatorname{polylog}(N)\) barrier for quantum ldpc codes. arXiv:2009.03921 (2020)
[15] J.F.P. Hudson . Piecewise Linear Topology. W.A. Benjamin (1969) · Zbl 0189.54507
[16] M. Kervaire and J. Milnor. Groups of homotopy spheres: I. Annals of Mathematics, 77(3) (1963), 504-537 · Zbl 0115.40505
[17] J. Milnor. Lectures on the h-Cobordism Theorem. Princeton University Press (2015).
[18] P. Panteleev and G. Kalachev. Quantum ldpc codes with almost linear distance. arXiv:2012.04068 (2020)
[19] A. Reich. Cycle bases of graphs and spanning trees with many leaves. BTU Cottbus-Senftenberg (2014)
[20] L. Santaló. Integral Geometry and Geometric Probability. Addison Wesley (1976). · Zbl 0342.53049
[21] J.R. Stallings. Polyhedral homotopy-spheres. Bulletin of the American Mathematical Society, 66(6) (1960), 485-488 · Zbl 0111.18901
[22] J.-P. Tillich and G. Zémor. Quantum ldpc codes with positive rate and minimum distance proportional to the square root of the blocklength. IEEE Transactions on Information Theory, 60(2) (2013), 1193-1202 · Zbl 1364.94630
[23] C.T.C. Wall. Surgery on Compact Manifolds. Mathematical Surveys & Monographs. American Mathematical Soc., 69 (1970). · Zbl 0219.57024
[24] Wikipedia, Systoles of surfaces. https://en.wikipedia.org/wiki/Systoles_of_surfaces [Online; accessed 15-October-2020]
[25] G. Zémor. On cayley graphs, surface codes, and the limits of homological quantum error correction. Springer. International Conference on Coding and Cryptology, 259- 273(2009). · Zbl 1248.94128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.