×

Generalizations of the Kolmogorov-Barzdin embedding estimates. (English) Zbl 1261.53041

The authors study several ways to measure the geometric complexity of an embedding of a simplicial complex into Euclidean space. The main theme is the connection between the effect of the topological complexity of the embedding and its geometrical complexity. The starting point is a result of Kolmogorov and Barzdin from the 1960s about the embedding of graphs in \(\mathbb R^3\), for which they introduced a notion of “expander”. Roughly stated, the result of Kolmogorov and Barzdin measures the difficulty of embedding expanders.
In the paper under review, the authors generalize the work of Kolmogorov and Barzdin in several directions. The first direction is a higher-dimensional analogue which deals with embeddings of \(k\)-dimensional simplicial complexes (generalizing embeddings of graphs) into an \(n\)-dimensional space with \(n\geq 2k+1\). In this setting, they prove, as in the case of Kolmogorov and Barzdin, a result relating the “thickness” and the number of simplices in the simplicial complex, generalizing an estimate Kolmogorov and Barzdin obtained for graphs. The second result deals with closed arithmetic hyperbolic 3-manifolds. The key property used is that this class of manifolds satisfies an expander-like isoperimetric inequality. The third result concerns distortion of knots. The authors give an alternate proof of a result obtained recently by J. Pardon saying that there exist isotopy classes of knots requiring arbitrarily large distortion. Here, a knot \(K\) is said to have distortion at least \(D\) if there exist two points \(x,y\in K\) with \(d_K(x,y)\geq D \mathrm{dist}_{{\mathbb R^3}}(x,y)\), where \(d_K(x,y)\) denotes the distance along \(K\), that is, the shortest distance from \(x\) to \(y\) measured on \(K\). The knots they use are built using arithmetic hyperbolic 3-manifolds.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
57R40 Embeddings in differential topology
57Q35 Embeddings and immersions in PL-topology

References:

[1] V. I. Arnold, “On A. N. Kolmogorov” in Kolmogorov in Perspective , Hist. Math. 20 , Amer. Math. Soc., Providence, 2000, 89-108.
[2] D. Bachman, D. Cooper, and M. E. White, Large embedded balls and Heegaard genus in negative curvature , Algebr. Geom. Topol. 4 (2004), 31-47. · Zbl 1056.57014 · doi:10.2140/agt.2004.4.31
[3] Y. M. Barzdin, “Notes on ‘On the realization of networks in three-dimensional space”’ in Selected Works of Kolmogorov , vol. 3, Kluwer, Dordrecht, 1993, 245.
[4] G. Buck and J. Simon, Thickness and crossing number of knots , Topology Appl. 91 (1999), 245-257. · Zbl 0924.57012 · doi:10.1016/S0166-8641(97)00211-3
[5] P. Bürgisser, F. Cucker, and M. Lotz, The probability that a slightly perturbed numerical analysis problem is difficult , Math. Comp. 77 (2008), 1559-1583. · Zbl 1195.65018 · doi:10.1090/S0025-5718-08-02060-7
[6] P. Buser, A note on the isoperimetric constant , Ann. Sci. Éc. Norm. Supér. (4) 15 (1982), 213-230. · Zbl 0501.53030
[7] J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian” in Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969) , Princeton Univ. Press, Princeton, 1970, 195-199. · Zbl 0212.44903
[8] L. Clozel, Démonstration de la conjecture \(\tau\) , Invent. Math. 151 (2003), 297-328. · Zbl 1025.11012 · doi:10.1007/s00222-002-0253-8
[9] J. W. Demmel, The probability that a numerical analysis problem is difficult , Math. Comp. 50 (1988), 449-480. · Zbl 0657.65066 · doi:10.2307/2008617
[10] P. Erdos and L. Lovász, “Problems and results on \(3\)-chromatic hypergraphs and some related questions” in Infinite and Finite Sets (Keszthely, 1973) , vol. II, Colloq. Math. Soc. János Bolyai 10 , North-Holland, Amsterdam, 1975, 609-627. · Zbl 0315.05117
[11] K. J. Falconer, Continuity properties of k-plane integrals and Besicovitch sets , Math. Proc. Cambridge Philos. Soc. 87 (1980), 221-226. · Zbl 0438.42014 · doi:10.1017/S0305004100056681
[12] J. Fox, M. Gromov, V. Lafforgue, A. Naor, and J. Pach, Overlap properties of geometric expanders , preprint, [math.CO] 1005.1392v1 · Zbl 1306.05171
[13] M. Gromov, Filling Riemannian manifolds , J. Differential Geom. 18 (1983), 1-147. · Zbl 0515.53037
[14] M. Gromov, Singularities, expanders and topology of maps, 1: Homology versus volume in the spaces of cycles , Geom. Funct. Anal. 19 (2009), 743-841. · Zbl 1195.58010 · doi:10.1007/s00039-009-0021-7
[15] M. Gromov, Singularities, expanders and topology of maps, 2: From combinatorics to topology via algebraic isoperimetry , Geom. Funct. Anal. 20 (2010), 416-526. · Zbl 1251.05039 · doi:10.1007/s00039-010-0073-8
[16] L. Guth, Notes on Gromov’s systolic estimate , Geom. Dedicata 123 (2006), 113-129. · Zbl 1125.53028 · doi:10.1007/s10711-006-9111-y
[17] Guth, Larry, The width-volume inequality , Geom. Funct. Anal. 17 (2007), 1139-1179. · Zbl 1141.53039 · doi:10.1007/s00039-007-0628-5
[18] H. M. Hilden, Three-fold branched coverings of \(S^{3}\) , Amer. J. Math. 98 (1976), 989-997. · Zbl 0342.57002 · doi:10.2307/2374037
[19] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications , Bull. Amer. Math. Soc. (N.S.) 43 (2006), 439-561. · Zbl 1147.68608 · doi:10.1090/S0273-0979-06-01126-8
[20] A. N. Kolmogorov and Y. M. Barzdin, “On the realization of networks in three-dimensional space” in Selected Works of Kolmogorov , vol. 3, Kluwer, Dordrecht, 1993, 194-202.
[21] J.-F. Lafont and B. Schmidt, Simplicial volume of closed locally symmetric spaces of non-compact type , Acta Math. 197 (2006), 129-143. · Zbl 1111.57020 · doi:10.1007/s11511-006-0009-1
[22] P. Li and S.-T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , Invent. Math. 69 (1982), 269-291. · Zbl 0503.53042 · doi:10.1007/BF01399507
[23] J. Milnor and W. Thurston, Characteristic numbers of \(3\)-manifolds , Enseign. Math. (2) 23 (1977), 249-254. · Zbl 0393.57002
[24] J. M. Montesinos, Three-manifolds as \(3\)-fold branched covers of \(S^{3}\) , Quart. J. Math. Oxford Ser. (2) 27 (1976), 85-94. · Zbl 0326.57002 · doi:10.1093/qmath/27.1.85
[25] A. Nabutovsky, Non-recursive functions, knots “with thick ropes,” and self-clenching “thick” hyperspheres , Comm. Pure Appl. Math. 48 (1995), 381-428. · Zbl 0845.57023 · doi:10.1002/cpa.3160480402
[26] S. P. Novikov and V. A. Rokhlin, eds., Topology II , Encyclopaedia Math. Sci. 24 , Springer, Berlin, 2004.
[27] J. O’Hara, Family of energy functionals of knots , Topology Appl. 48 (1992), 147-161. · Zbl 0769.57006 · doi:10.1016/0166-8641(92)90023-S
[28] J. Pardon, On the distortion of knots on embedded surfaces , Ann. of Math. (2) 174 (2011), 637-646. · Zbl 1227.57013 · doi:10.4007/annals.2011.174.1.21
[29] M. S. Pinsker, “On the complexity of a concentrator” in 7th International Teletraffic Conference , 1973, 318/1-318/4.
[30] A. Selberg, On the estimation of Fourier coefficients of modular forms , Proc. Sympos. Pure Math 8 (1965), 1-15. · Zbl 0142.33903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.