×

Singular perturbation of an elastic energy with a singular weight. (English) Zbl 1485.49003

Summary: We study the singular perturbation of an elastic energy with a singular weight. The minimization of this energy results in a multi-scale pattern formation. We derive an energy scaling law in terms of the perturbation parameter and prove that, although one cannot expect periodicity of minimizers, the energy of a minimizer is uniformly distributed across the sample. Finally, following the approach developed by G. Alberti and S. Müller [Commun. Pure Appl. Math. 54, No. 7, 761–825 (2001; Zbl 1021.49012)] we prove that a sequence of minimizers of the perturbed energies converges to a Young measure supported on piecewise-linear periodic functions of slope \(\pm 1\) whose period depends on the location in the domain and the weights in the energy.

MSC:

49J05 Existence theories for free problems in one independent variable
49J45 Methods involving semicontinuity and convergence; relaxation
35Q74 PDEs in connection with mechanics of deformable solids
74G65 Energy minimization in equilibrium problems in solid mechanics
35B25 Singular perturbations in context of PDEs

Citations:

Zbl 1021.49012

References:

[1] Bhattacharya, K.; Friesecke, G.; James, R. D., The mathematics of microstructure and the design of new materials, Proc. Natl. Acad. Sci., 96, 15, 8332-8333 (1999)
[2] Ericksen, J. L., Equilibrium of bars, J. Elast., 5, 3-4, 191-201 (1975) · Zbl 0324.73067
[3] Ren, X.; Winter, M., Young measures in a nonlocal phase transition problem, Proc. Roy. Soc. Edinburgh Sect. A, 127, 3, 615-637 (1997) · Zbl 0912.49001
[4] Ren, X.; Truskinovsky, L., Finite scale microstructures in nonlocal elasticity, J. Elast., 59, 1-3, 319-355 (2000) · Zbl 0990.74007
[5] Roitburd, A., Martensitic transformation as a typical phase transformation in solids, (Solid State Physics, Vol. 33 (1978), Elsevier), 317-390
[6] Müller, S., Variational models for microstructure and phase transitions, (Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lecture Notes in Math., vol. 1713 (1999), Springer: Springer Berlin), 85-210 · Zbl 0968.74050
[7] Truskinovsky, L.; Zanzotto, G., Ericksen’s bar revisited: energy wiggles, J. Mech. Phys. Solids, 44, 8, 1371-1408 (1996)
[8] Müller, S., Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. Partial Differential Equations, 1, 2, 169-204 (1993) · Zbl 0821.49015
[9] Ren, X.; Wei, J., On the multiplicity of solutions of two nonlocal variational problems, SIAM J. Math. Anal., 31, 4, 909-924 (2000), (electronic) · Zbl 0973.49007
[10] Yip, N. K., Structure of stable solutions of a one-dimensional variational problem, ESAIM Control Optim. Calc. Var., 12, 4, 721-751 (2006) · Zbl 1117.49025
[11] Alberti, G.; Müller, S., A new approach to variational problems with multiple scales, Comm. Pure Appl. Math., 54, 7, 761-825 (2001) · Zbl 1021.49012
[12] Conti, S., Branched microstructures: scaling and asymptotic self-similarity, Comm. Pure Appl. Math., 53, 11, 1448-1474 (2000) · Zbl 1032.74044
[13] Kohn, R. V.; Müller, S., Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math., 47, 4, 405-435 (1994) · Zbl 0803.49007
[14] Choksi, R., Scaling laws in microphase separation of diblock copolymers, J. Nonlinear Sci., 11, 3, 223-236 (2001) · Zbl 1023.82015
[15] Choksi, R.; Ren, X., On the derivation of a density functional theory for microphase separation of diblock copolymers, J. Stat. Phys., 113, 1/2, 151-176 (2003) · Zbl 1034.82037
[16] Ohta, T.; Kawasaki, K., Equilibrium morphology of block copolymer melts, Macromolecules, 19, 10, 2621-2632 (1986)
[17] Choksi, R.; Topaloglu, I.; Tsogtgerel, G., Axisymmetric critical points of a nonlocal isoperimetric problem on the two-sphere, ESAIM: COCV, 21, 1, 247-270 (2015) · Zbl 1319.35307
[18] Topaloglu, I., On a nonlocal isoperimetric problem on the two-sphere, Commun. Pure Appl. Anal., 12, 1, 597-620 (2013) · Zbl 1302.49061
[19] Chantawansri, T. L.; Bosse, A. W.; Hexemer, A.; Ceniceros, H. D.; García-Cervera, C. J.; Kramer, E. J.; Fredrickson, G. H., Self-consistent field theory simulations of block copolymer assembly on a sphere, Phys. Rev. E, 75, 3, 031802 (2007)
[20] Li, J. F.; Fan, J.; Zhang, H. D.; Qiu, F.; Tang, P.; Yang, Y. L., Self-assembled pattern formation of block copolymers on the surface of the sphere using self-consistent field theory, Eur. Phys. J. E, 20, 4, 449-457 (2006)
[21] Tang, P.; Qiu, F.; Zhang, H.; Yang, Y., Phase separation patterns for diblock copolymers on spherical surfaces: A finite volume method, Phys. Rev. E, 72, 1, 016710 (2005)
[22] Choksi, R.; Muratov, C. B.; Topaloglu, I., An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications, Notices Amer. Math. Soc., 64, 11, 1275-1283 (2017) · Zbl 1376.49059
[23] Higuchi, T., Microphase-separated structures under spherical 3D confinement, Polym. J., 49, 6, 467 (2017)
[24] Owen, N. C.; Sternberg, P., Nonconvex variational problems with anisotropic perturbations, Nonlinear Anal., 16, 7-8, 705-719 (1991) · Zbl 0748.49034
[25] McGown, K. J.; Parks, H. R., The generalization of Faulhaber’s formula to sums of non-integral powers, J. Math. Anal. Appl., 330, 1, 571-575 (2007) · Zbl 1176.11004
[26] Braides, A., \( \Gamma \)-Convergence for beginners, (Oxford Lecture Series in Mathematics and its Applications, vol. 22 (2002), Oxford University Press: Oxford University Press Oxford) · Zbl 1198.49001
[27] Pedregal, P., Variational Methods in Nonlinear Elasticity, xii+99 (2000), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 0941.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.