×

On the weak solutions to a stochastic two-phase flow model. (English) Zbl 1485.35442

Summary: We study, in this article, a stochastic version of a coupled Allen-Cahn-Navier-Stokes model in a two- or three-dimensional bounded domain. The model consists of the Navier-Stokes equations for the velocity, coupled with an Allen-Cahn model for the order (phase) parameter. These equations are motivated by the dynamic of binary fluids under the influence of stochastic external forces. We prove the existence of a probabilistic weak solutions. The proof relies on a Galerkin approximation as well as some compactness results. In the two-dimensional case, we prove the uniqueness of the weak solutions.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
35D30 Weak solutions to PDEs
35Q35 PDEs in connection with fluid mechanics
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
76M35 Stochastic analysis applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Brzeźniak, Z.; Liu, W.; Zhu, J., Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal Real World Appl, 17, 283-310 (2014) · Zbl 1310.60091 · doi:10.1016/j.nonrwa.2013.12.005
[2] Liu, W.; Röckner, M., SPDE in Hilbert space with locally monotone coefficients, J Funct Anal, 259, 11, 2902-2922 (2010) · Zbl 1236.60064 · doi:10.1016/j.jfa.2010.05.012
[3] Liu, W.; Röckner, M., Local and global well-posedness of SPDE with generalized coercivity conditions, J Differ Equ, 254, 2, 725-755 (2013) · Zbl 1264.60046 · doi:10.1016/j.jde.2012.09.014
[4] Gal, C.; Grasselli, M., Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin Dyn Syst, 28, 1, 1-39 (2010) · Zbl 1194.35056 · doi:10.3934/dcds.2010.28.1
[5] Blesgen, T., A generalization of the Navier-Stokes equation to two-phase flow, Physica D, 32, 1119-1123 (1999)
[6] Caginalp, G., An analysis of a phase field model of a free boundary, Arch Ration Mech Anal, 92, 3, 205-245 (1986) · Zbl 0608.35080 · doi:10.1007/BF00254827
[7] Gal, C.; Grasselli, M., Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann Inst H Poincaré Anal Non Linéaire, 27, 1, 401-436 (2010) · Zbl 1184.35055 · doi:10.1016/j.anihpc.2009.11.013
[8] Gal, C.; Grasselli, M., Trajectory attractors for binary fluid mixtures in 3D, Chin Ann Math Ser B, 31, 5, 655-678 (2010) · Zbl 1223.35079 · doi:10.1007/s11401-010-0603-6
[9] Feireisl, E.; Petzeltová, H.; Rocca, E., Analysis of a phase-field model for two-phase compressible fluids, Math Models Methods Appl Sci, 20, 7, 1129-1160 (2010) · Zbl 1200.76155 · doi:10.1142/S0218202510004544
[10] Gurtin, ME; Polignone, D.; Vinals, J., Two-phase binary fluid and immiscible fluids described by an order parameter, Math Models Methods Appl Sci, 6, 815-831 (1996) · Zbl 0857.76008 · doi:10.1142/S0218202596000341
[11] Hohenberg, PC; Halperin, BI., Theory of dynamical critical phenomena, Rev Modern Phys, 49, 435-479 (1977) · doi:10.1103/RevModPhys.49.435
[12] Tachim Medjo, T., On the existence and uniqueness of solution to a stochastic 2D Cahn-Hilliard-Navier-Stokes model, J Differ Equ, 262, 1028-1054 (2017) · Zbl 1365.35235 · doi:10.1016/j.jde.2017.03.008
[13] Tachim Medjo, T., On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model, Stoch Dyn, 19, 1 (2019) · Zbl 1410.35295
[14] Ndongmo Ngana, A.; Deugoué, G.; Tachim Medjo, T., Martingale solutions to stochastic nonlocal Cahn-Hilliard-Navier-Stokes equations with multiplicative noise of jump type, Physica D, 398, 23-68 (2019) · Zbl 1453.60117 · doi:10.1016/j.physd.2019.05.012
[15] Breckner, H., Galerkin approximation and the strong solution of the Navier-Stokes equation, J Appl Math Stoch Anal, 13, 3, 239-259 (2000) · Zbl 0974.60045 · doi:10.1155/S1048953300000228
[16] Caraballo, T.; Real, J.; Taniguchi, T., On the existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier-Stokes equations, Proc R Soc Lond Ser A Math Phys Eng Sci, 462, 2066, 459-479 (2006) · Zbl 1149.35397 · doi:10.1098/rspa.2005.1574
[17] Tachim Medjo, T., A non-autonomous two-phase flow model with oscillating external force and its global attractor, Nonlinear Anal, 75, 1, 226-243 (2012) · Zbl 1230.35091 · doi:10.1016/j.na.2011.08.024
[18] Tachim Medjo, T.; Tone, F., Long time stability of a classical efficient scheme for an incompressible two-phase flow model, Asymptot Anal, 95, 1-2, 101-127 (2015) · Zbl 1382.76194 · doi:10.3233/ASY-151325
[19] Tachim Medjo, T.; Tone, F., Long-time stability of the implicit Euler scheme for homogeneous incompressible two-phase flows, Asymptot Anal, 95, 1-2, 101-127 (2015) · Zbl 1382.76194 · doi:10.3233/ASY-151325
[20] Da Prato, G, Zabczyk, J.Stochastic equations in infinite dimensions. 2nd ed. Cambridge: Cambridge University Press; 2014. (Encyclopedia of mathematics and its applications; 152). · Zbl 1317.60077
[21] Boyer, F., Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptotic Anal, 20, 175-212 (1999) · Zbl 0937.35123
[22] Boyer, F., Nonhomogeneous Cahn-Hilliard fluids, Ann Inst H Poincaré Anal Non Linéaire, 18, 225-259 (2001) · Zbl 1037.76062 · doi:10.1016/S0294-1449(00)00063-9
[23] Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput Fluids, 31, 41-68 (2002) · Zbl 1057.76060 · doi:10.1016/S0045-7930(00)00031-1
[24] Abels, H.; Feireisl, E., On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ Math J, 57, 659-698 (2008) · Zbl 1144.35041 · doi:10.1512/iumj.2008.57.3391
[25] Abels, H., On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch Ration Mech Anal, 194, 463-506 (2009) · Zbl 1254.76158 · doi:10.1007/s00205-008-0160-2
[26] Vishik, MI; Komech, AI; Fursikov, AV., Some mathematical problems of statistical hydromechanics, Uspekhi Mat Nauk, 209, 5, 135-210 (1979) · Zbl 0495.76036
[27] Skorohod, AV., Studies in the theory of random processes (1965), Reading (MA): Addison-Wesley Publishing Co., Inc., Reading (MA) · Zbl 0146.37701
[28] Sango, M., Magnetohydrodynamic turbulent flows: existence results, Physica D, 239, 12, 912-923 (2010) · Zbl 1193.76162 · doi:10.1016/j.physd.2010.01.009
[29] Deugoué, G.; Razafimandimby, PA; Sango, M., On the 3-D stochastic magnetohydrodynamic-α model, Stochastic Process Appl, 122, 5, 2211-2248 (2012) · Zbl 1241.35223 · doi:10.1016/j.spa.2012.03.002
[30] Deugoué, G.; Sango, M., Weak solutions to stochastic 3D Navier-Stokes-α model of turbulence: α-asymptotic behavior, J Math Anal Appl, 384, 1, 49-62 (2011) · Zbl 1271.76063 · doi:10.1016/j.jmaa.2010.10.048
[31] Kallenberg, O.Foundations of modern probability. Probability and its applications. New York (NY): Springer-Verlag; 1997. · Zbl 0892.60001
[32] Bensoussan, A., Stochastic Navier-Stokes equations, Acta Appl Math, 38, 3, 267-304 (1995) · Zbl 0836.35115 · doi:10.1007/BF00996149
[33] Krylov, NV; Rozovskii, BL., Stochastic evolution equations, Interdiscip Math Sci, 2, 1-69 (2007) · Zbl 1130.60069 · doi:10.1142/9789812770639_0001
[34] Temam, R.Infinite dynamical systems in mechanics and physics. 2nd ed. New York (NY): Springer-Verlag; 1997. (Applied Mathematical Sciences; vol. 68). · Zbl 0871.35001
[35] Temam, R.Navier-Stokes equations, theory and numerical analysis. Providence (RI): AMS; 2001. (AMS-Chelsea series). · Zbl 0981.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.