×

On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model. (English) Zbl 1410.35295

Summary: We study, in this paper, a stochastic version of a coupled Allen-Cahn-Navier-Stokes model in a two-dimensional (2D) bounded domain. The model consists of the Navier-Stokes equations (NSEs) for the velocity, coupled with a Allen-Cahn model for the order (phase) parameter. We prove the existence and the uniqueness of a variational solution.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
35Q35 PDEs in connection with fluid mechanics
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
76M35 Stochastic analysis applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Abels, H., On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J.57 (2008) 659-698. · Zbl 1144.35041
[2] Abels, H., On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal.194 (2009) 463-506. · Zbl 1254.76158
[3] Bensoussan, A. and Temam, R., Equations stochastiques de type Navier-Stokes, J. Funct. Anal.13 (1973) 195-222. · Zbl 0265.60094
[4] Blesgen, T., A generalization of the Navier-Stokes equation to two-phase flow, Physica D32 (1999) 1119-1123.
[5] Boyer, F., Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptotic Anal.20 (1999) 175-212. · Zbl 0937.35123
[6] Boyer, F., Nonhomogeneous Cahn-Hilliard fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (2001) 225-259. · Zbl 1037.76062
[7] Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids31 (2002) 41-68. · Zbl 1057.76060
[8] H. Breckner, Approximation and optimal control of the stochastic Navier-Stokes equations, Dissertation, Martin-Luther University, Halle-Wittenberg (1999).
[9] Breckner, H., Galerkin approximation and the strong solution of the Navier-Stokes equation, J. Appl. Math. Stochastic Anal.13(3) (2000) 239-259. · Zbl 0974.60045
[10] Brzeźniak, Z., Hausenblas, E. and Zhu, J., 2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Anal.79 (2013) 122-139. · Zbl 1261.60061
[11] Brzeźniak, Z., Liu, W. and Zhu, J., Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl.17 (2014) 283-310. · Zbl 1310.60091
[12] Caginalp, G., An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal.92(3) (1986) 205-245. · Zbl 0608.35080
[13] Cao, C. and Gal, C. G., Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity25(11) (2012) 3211-3234. · Zbl 1259.35048
[14] Caraballo, T., Real, J. and Taniguchi, T., On the existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier-Stokes equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.462(2066) (2006) 459-479. · Zbl 1149.35397
[15] Da Prato, G. and Zabczyk, J., Stochastic Equations in Infinite Dimensions (Cambridge University Press, Cambridge, 1996). · Zbl 1140.60034
[16] Da Prato, G. and Zabczyk, J., Stochastic Equations in Infinite Dimensions, 2nd edn. , Vol. 152 (Cambridge University Press, Cambridge, 2014). · Zbl 1317.60077
[17] Faris, W. G. and Jona-Lasinio, G., Large fluctuations for a nonlinear heat equation with noise, J. Phys. A15(10) (1982) 3025-3055. · Zbl 0496.60060
[18] Feireisl, E., Petzeltová, H., Rocca, E. and Schimperna, G., Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci.20(7) (2010) 1129-1160. · Zbl 1200.76155
[19] Gal, C. and Grasselli, M., Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire27(1) (2010) 401-436. · Zbl 1184.35055
[20] Gal, C. G. and Grasselli, M., Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst.28(1) (2010) 1-39. · Zbl 1194.35056
[21] Gal, C. G. and Grasselli, M., Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B31(5) (2010) 655-678. · Zbl 1223.35079
[22] Gurtin, M. E., Polignone, D. and Vinals, J., Two-phase binary fluid and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci.6 (1996) 8-15. · Zbl 0857.76008
[23] Hohenberg, P. C. and Halperin, B. I., Theory of dynamical critical phenomena, Rev. Mod. Phys.49 (1977) 435-479.
[24] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math.63(1) (1934) 193-248. · JFM 60.0726.05
[25] Lions, J. L. and Prodi, G., Un théorème d’existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris248 (1959) 3519-3521. · Zbl 0091.42105
[26] Liu, W. and Röckner, M., SPDE in Hilbert space with locally monotone coefficients, J. Funct. Anal.259(11) (2010) 2902-2922. · Zbl 1236.60064
[27] Liu, W. and Röckner, M., Local and global well-posedness of SPDE with generalized coercivity conditions, J. Differential Equations254(2) (2013) 725-755. · Zbl 1264.60046
[28] T. Tachim Medjo, A note on the regularity of weak solutions to the coupled 2D Allen-Cahn-Navier-Stokes system, submitted. · Zbl 1365.35235
[29] Medjo, T. Tachim, On the existence and uniqueness of solution to a stochastic 2D Cahn-Hilliard-Navier-Stokes model, J. Differential Equations262 (2017) 1028-1054. · Zbl 1365.35235
[30] Onuki, A., Phase transition of fluids in shear flow, J. Phys. Condens. Matter9 (1997) 6119-6157.
[31] E. Pardoux, Equations and Dérivées Partielles Stochastiques Non Linéaires Monotones, Thèse Université Paris XI (1975).
[32] Temam, R., Infinite Dynamical Systems in Mechanics and Physics, 2nd edn. , Vol. 68 (Springer-Verlag, New York, 1997). · Zbl 0871.35001
[33] Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis, (American Mathematical Society, Providence, 2001). · Zbl 0981.35001
[34] Temam, R. and Ziane, M., Some mathematical problems in geophysical fluid dynamics, in Handbook of Mathematical Fluid Dynamics, Vol. III, eds. Friedlander, S. and Serre, D. (Elsevier, 2004), pp. 535-658. · Zbl 1222.35145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.