×

Optimality conditions for convex stochastic optimization problems in Banach spaces with almost sure state constraints. (English) Zbl 1484.90055

Stochastic optimization problems in abstract spaces are considered related to two-stage stochastic programs (stochastic programs with recourse): Minimize a convex expectation-valued function \(J=J(x_1,x_2(\cdot))\) subject to a convex constraint for a deterministic variable \(x_1\) and an almost sure (a.s.) convex constraint, such as an a.s. bound depending on the deterministic variable \(x_1\), for a second, stochastic variable \(x_2 = x_2(\omega)\). The aim of the article is to provide necessary and sufficient optimality conditions for this problem. Using the perturbation approach, the existence of saddle points of a certain generalized Lagrangian is shown, and Karush-Kuhn-Tucker (KKT) optimality conditions are derived. A model problem is presented, and a concrete example is given.

MSC:

90C15 Stochastic programming
49K99 Optimality conditions
49N15 Duality theory (optimization)

References:

[1] A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1166-1192, https://doi.org/10.1137/16M106306X. · Zbl 1391.93289
[2] J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, Cambridge, England, 1990, https://doi.org/10.1017/cbo9780511897450. · Zbl 0701.47041
[3] P. Atwal, S. Conti, B. Geihe, M. Pach, M. Rumpf, and R. Schultz, On shape optimization with stochastic loadings, in Constrained Optimization and Optimal Control for Partial Differential Equations, International Series of Numerical Mathematics 160, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, eds., Birkhäuser Basel, Basel, Switzerland, 2012, pp. 215-243, https://doi.org/10.1007/978-3-0348-0133-1_12. · Zbl 1231.49001
[4] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Modern Birkhäuser Classics, Birkhäuser Boston, Boston, MA, 2009, https://doi.org/10.1007/978-0-8176-4848-0. · Zbl 1168.49014
[5] M. Bergounioux and K. Kunisch, Augmented Lagrangian techniques for elliptic state constrained optimal control problems, SIAM J. Control Optim., 35 (1997), pp. 1524-1543, https://doi.org/10.1137/S036301299529330X. · Zbl 0897.49001
[6] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000, https://doi.org/10.1007/978-1-4612-1394-9. · Zbl 0966.49001
[7] S. C. Brenner and L.-Y. Sung, A new convergence analysis of finite element methods for elliptic distributed optimal control problems with pointwise state constraints, SIAM J. Control Optim., 55 (2017), pp. 2289-2304, https://doi.org/10.1137/16M1088090. · Zbl 1370.49006
[8] S. C. Brenner, L.-Y. Sung, and W. Wollner, A one dimensional elliptic distributed optimal control problem with pointwise derivative constraints, Numer. Funct. Anal. Optim., 41 (2020), pp. 1549-1563, https://doi.org/10.1080/01630563.2020.1785495. · Zbl 1447.49001
[9] E. Casas, Control of an elliptic problem with pointwise state constraints, SIAM J. Control Optim., 24 (1986), pp. 1309-1318, https://doi.org/10.1137/0324078. · Zbl 0606.49017
[10] E. Casas and J. F. Bonnans, Contrôle de systèmes elliptiques semilinéares comportant des contraintes sur l’état, in Nonlinear Partial Differential Equations and their Applications 8, Pitman Res. Notes Math. Ser., Longman, New York, 1988, pp. 69-86. · Zbl 0656.49011
[11] E. Casas, M. Mateos, and B. Vexler, New regularity results and improved error estimates for optimal control problems with state constraints, ESAIM Control Optim. Calc. Var., 20 (2014), pp. 803-822, https://doi.org/10.1051/cocv/2013084. · Zbl 1293.49044
[12] P. Chen, U. Villa, and O. Ghattas, Taylor approximation and variance reduction for PDE-constrained optimal control under uncertainty, J. Comput. Phys., 385 (2019), pp. 163-186, https://doi.org/10.1016/j.jcp.2019.01.047. · Zbl 1451.65076
[13] C. Christof and B. Vexler, New regularity results and finite element error estimates for a class of parabolic optimal control problems with pointwise state constraints, ESAIM Control Optim. Calc. Var., 39 (2021), https://doi.org/10.1051/cocv/2020059. · Zbl 1473.35609
[14] S. Conti, H. Held, M. Pach, M. Rumpf, and R. Schultz, Shape optimization under uncertainty-a stochastic programming perspective, SIAM J. Optim., 19 (2008), pp. 1610-1632, https://doi.org/10.1137/070702059. · Zbl 1176.49045
[15] J. Diestel and J. Uhl, Vector Measures, Math. Surveys Monogr. 15, Amer. Math. Soc., Providence, RI, 1977, https://doi.org/10.1090/surv/015. · Zbl 0369.46039
[16] N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, of Pure and Applied Mathematics 7, John Wiley, New York, 1957.
[17] M. H. Farshbaf-Shaker, R. Henrion, and D. Hömberg, Properties of chance constraints in infinite dimensions with an application to PDE constrained optimization, Set-Valued Var. Anal., 26 (2018), pp. 821-841, https://doi.org/10.1007/s11228-017-0452-5. · Zbl 1410.90135
[18] C. Geiersbach, E. Loayza-Romero, and K. Welker, Stochastic approximation for optimization in shape spaces, SIAM J. Optim., 31 (2021), pp. 348-376, https://doi.org/10.1137/20M1316111. · Zbl 1458.49034
[19] C. Geiersbach and W. Wollner, A stochastic gradient method with mesh refinement for PDE-constrained optimization under uncertainty, SIAM J. Sci. Comput., 42 (2020), pp. A2750-A2772, https://doi.org/10.1137/19M1263297. · Zbl 1452.62599
[20] K. Gröger, A \(W^{1,p}\)-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283 (1989), pp. 679-687, https://doi.org/10.1007/BF01442860. · Zbl 0646.35024
[21] P. A. Guth, V. Kaarnioja, F. Y. Kuo, C. Schillings, and I. H. Sloan, A quasi-Monte Carlo method for optimal control under uncertainty, SIAM/ASA J. Uncertain. Quantif., 9 (2021), pp. 354-383, https://doi.org/10.1137/19M1294952. · Zbl 1475.49004
[22] O. Hans, Inverse and adjoint transforms of linear bounded random transforms, in Transactions of the First Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Publishing House of the Czechoslovak Academy of Sciences, Prague, Czech Republic, 1957, pp. 127-133. · Zbl 0087.33103
[23] M. Hintermüller, A. Schiela, and W. Wollner, The length of the primal-dual path in Moreau-Yosida-based path-following methods for state constrained optimal control, SIAM J. Optim., 24 (2014), pp. 108-126, https://doi.org/10.1137/120866762. · Zbl 1408.49026
[24] T. Hytönen, J. Van Neerven, M. Veraar, and L. Weis, Analysis in Banach Spaces. Vol. I: Martingales and Littlewood-Paley Theory, Springer, New York, 2016, https://doi.org/10.1007/978-3-319-48520-1. · Zbl 1366.46001
[25] A. D. Ioffe and V. L. Levin, Subdifferentials of convex functions, Tr. Mosk. Mat. Obs., 26 (1972), pp. 3-73. · Zbl 0257.46042
[26] D. Kouri, M. Heinkenschloss, D. Ridzal, and B. Van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty, SIAM J. Sci. Comput., 35 (2013), pp. A1847-A1879, https://doi.org/10.1137/120892362. · Zbl 1275.49047
[27] D. Kouri and T. Surowiec, Risk-averse PDE-constrained optimization using the conditional value-at-risk, SIAM J. Optim., 26 (2016), pp. 365-396, https://doi.org/10.1137/140954556. · Zbl 1337.49049
[28] D. Kouri and T. Surowiec, Existence and optimality conditions for risk-averse PDE-constrained optimization, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 787-815, https://doi.org/10.1137/16M1086613. · Zbl 1393.49002
[29] D. Kouri and T. Surowiec, Risk-averse optimal control of semilinear elliptic PDEs, ESAIM Control Optim. Calc. Var., 26 (2019), https://doi.org/10.1051/cocv/2019061. · Zbl 1448.49006
[30] V. Leclere, Contributions to Decomposition Methods in Stochastic Optimization, Ph.D. thesis, Université Paris-Est, 2014, https://pastel.archives-ouvertes.fr/tel-01148466/.
[31] V. Leclere, Epiconvergence of relaxed stochastic optimization problems, Oper. Res. Lett., 47 (2019), pp. 553-559, https://doi.org/10.1016/j.orl.2019.09.014. · Zbl 1476.90221
[32] V. L. Levin, The Lebesgue decomposition for functionals on the vector-function space \(L_X^\infty \), Funct. Anal. Appl., 8 (1974), pp. 314-317, https://doi.org/10.1007/bf01075488. · Zbl 0315.46035
[33] V. L. Levin, Convex integral functionals and the theory of lifting, Russian Math. Surveys, 30 (1975), pp. 119-184, https://doi.org/10.1070/rm1975v030n02abeh001408. · Zbl 0332.46031
[34] T. Pennanen and A.-P. Perkkiö, Convex duality in optimal investment and contingent claim valuation in illiquid markets, Finance Stoch., 22 (2018), pp. 733-771, https://doi.org/10.1007/s00780-018-0372-8. · Zbl 1416.91358
[35] T. Pennanen and A.-P. Perkkiö, Convex integral functionals of processes of bounded variation, J. Convex Anal., 25 (2018), pp. 161-179. · Zbl 1390.60141
[36] G. C. Pflug and A. Pichler, Multistage Stochastic Optimization, Springer Series in Operations Research and Financial Engineering, Springer, Cham, Switzerland, 2014, https://doi.org/10.1007/978-3-319-08843-3. · Zbl 1317.90220
[37] C. Phelps, J. O. Royset, and Q. Gong, Optimal control of uncertain systems using sample average approximations, SIAM J. Control Optim., 54 (2016), pp. 1-29, https://doi.org/10.1137/140983161. · Zbl 1334.49078
[38] E. Polak, Optimization: Algorithms and Consistent Approximations, Applied Mathematical Sciences 124, J. E. Marsden, L. Sirovich, and F. John, eds., Springer-Verlag, New York, 1997. · Zbl 0899.90148
[39] R. T. Rockafellar, Convex Integral Functionals and Duality, in Contributions to Nonlinear Functional Analysis, Elsevier, Amsterdam, Netherlands, 1971, pp. 215-236, https://doi.org/10.1016/b978-0-12-775850-3.50012-1.
[40] R. T. Rockafellar, Integrals which are convex functionals. II, Pacific J. Math, 39 (1971), pp. 439-469, http://projecteuclid.org/euclid.pjm/1102969571. · Zbl 0236.46031
[41] R. T. Rockafellar, Conjugate Duality and Optimization, SIAM, Philadelphia, PA, 1974, https://doi.org/10.1137/1.9781611970524. · Zbl 0296.90036
[42] R. T. Rockafellar and J. Royset, Engineering decisions under risk averseness, ASCE-ASME J. Risk Uncertain. Eng. Syst., 1 (2015), 04015003, https://doi.org/10.1061/AJRUA6.0000816.
[43] R. T. Rockafellar and R. J.-B. Wets, Stochastic convex programming: Kuhn-Tucker conditions, J. Math. Econom., 2 (1975), pp. 349-370, https://doi.org/10.1016/0304-4068(75)90003-8. · Zbl 0343.90039
[44] R. T. Rockafellar and R. J.-B. Wets, Stochastic convex programming: Basic duality, Pacific J. Math., 62 (1976), pp. 173-195, http://projecteuclid.org/euclid.pjm/1102867873. · Zbl 0339.90048
[45] R. T. Rockafellar and R. J.-B. Wets, Stochastic convex programming: Relatively complete recourse and induced feasibility, SIAM J. Control Optim., 14 (1976), pp. 574-589, https://doi.org/10.1137/0314038. · Zbl 0346.90058
[46] R. T. Rockafellar and R. J.-B. Wets, Stochastic convex programming: Singular multipliers and extended duality singular multipliers and duality, Pacific J. Math., 62 (1976), pp. 507-522, http://projecteuclid.org/euclid.pjm/1102867735. · Zbl 0346.90057
[47] A. Schiela, Barrier methods for optimal control problems with state constraints, SIAM J. Optim., 20 (2009), pp. 1002-1031, https://doi.org/10.1137/070692789. · Zbl 1201.90201
[48] A. Schiela and W. Wollner, Barrier methods for optimal control problems with convex nonlinear gradient state constraints, SIAM J. Optim., 21 (2011), pp. 269-286, https://doi.org/10.1137/080742154. · Zbl 1279.90194
[49] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, MPS/SIAM Series on Optimization 9, SIAM, Philadelphia, PA, 2009, https://doi.org/10.1137/1.9780898718751. · Zbl 1183.90005
[50] F. Tröltzsch, Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, Amer. Math. Soc., 112, http://dx.doi.org/10.1090/gsm/112. Providence, RI, 2010. · Zbl 1195.49001
[51] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems, MOS-SIAM Series on Optimization, SIAM, Philadelphia, PA, 2011, https://doi.org/10.1137/1.9781611970692. · Zbl 1235.49001
[52] A. Van Barel and S. Vandewalle, Robust optimization of PDEs with random coefficients using a multilevel Monte Carlo method, SIAM/ASA J. Uncertain. Quantif., 7 (2019), pp. 174-202, https://doi.org/10.1137/17M1155892. · Zbl 1421.35396
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.